Megan deBettencourt

Q | ■ | ♥ | in | Q

I am a research scientist (PhD Princeton, BS Columbia) with expertise in neuroscience, engineering, and human psychology. My goal is to use technology to augment and improve human behavior, using brain-computer interfaces, machine learning, and data analysis in conjunction with neural recordings. I have been an invited panelist and reviewer for NeurIPS workshops and have led multiple cross-functional academic-industry partnerships, funded by Intel Labs, Wellcome Leap, NIH, and NSF.

EDUCATION

Princeton University PhD in Neuroscience 2016 MA in Neuroscience 2012

Columbia University BS in Applied Mathematics 2010 Magna Cum Laude

LINKS

Github:// debetten LinkedIn:// megan-debettencourt Twitter:// @MdeBettencourt

SKILLS

Programming Python • Matlab • R • Bash

Computational analysis

scikit-learn • pandas • numpy • scipy

Neuroscience modalities

fMRI • EEG • fNIRS • EOG • Pupillometry • Eye-tracking

Human psychology expertise

Attention • Learning • Memory

Data collection

Online (1000+ subjects MTurk & Prolific) • On site (1000+ subjects Psychtoolbox & Psychopy) • In hospital (50+ patients)

Communication

Writing • Presentations • Experiment design • Statistics • Data analysis • Data visualization • Mentoring

LANGUAGES

English native **French** proficient

HOBBIES

Wheel-thrown functional ceramics Trail running, birding NYTimes crossword puzzles

EXPERIENCE

Ruby Neurotech | Research Scientist | 2023-Present

• Designing and building **brain-computer interfaces** to improve **mental health**, funded by Wellcome Leap in collaboration with Uppsala University

Stanford University | Consultant | 2023 - Present

• Providing expert advice on collaborative project to improve **human memory** from **real-time pupil** dynamics, funded by Wu Tsai Human Performance Alliance

University of Chicago | Post-doctoral fellow | 2016 - 2023 Institute for Mind and Biology, Grossman Institute for Neuroscience

• Designed platforms that could forecast **attention lapses** from **multivariate patterns of EEG**, human behavior, and **pupillometry**

Princeton University | Graduate fellow | 2010 - 2016

Princeton Neuroscience Institute, Computational Memory Lab

- Pioneered fMRI brain-computer interfaces with closed-loop neurofeedback from real-time multivariate decoding, resulting in 4 publications (500+ citations)
- Launched Intel Labs partnership for <u>Brainiak</u>, a cloud platform for fMRI analysis

Columbia University | Undergraduate researcher | 2007 - 2010 Department of Biomedical & Electrical Engineering

• Developed signal processing tools and SVMs to decode single-trial EEG-fMRI

PRESENTATIONS

- Invited speaker and panelist at Neuroethics and the Future of Reality
- NeurIPS 2022 invited panelist at "All Things Attention: Bridging Different Perspectives on Attention" workshop and **reviewer** for "Gaze meets ML" workshop
- 50+ invited **talks and presentations**, including at Brown, FSU, CMU, JHU, MIT, NIH, Stanford, UCLA, UCSB, UCSD, UCSF, UT Austin, UofT, VaTech

RESEARCH FUNDING & AWARDS

Awarded over \$400,000 in grants for research funding including:

- \$200,774 National Institutes of Health Brain Initiative K99, 2022-23
- \$150,527 National Institute of Mental Health NRSA F32, 2018-21
- \$130,000 National Science Foundation Graduate Research Fellowship, 2012-15

SELECTED PUBLICATIONS

- <u>MT deBettencourt</u>, JD Cohen, RF Lee, KA Norman, NB Turk-Browne (2015) Closed-loop training of attention with real-time brain imaging. *Nature Neuroscience*
- <u>MT deBettencourt</u>, PA Keene, E Awh, EK Vogel (2019) Real-time triggering reveals concurrent lapses of attention and working memory. *Nature Human Behaviour*
- CD Wakeland-Hart, SA Cao, <u>MT deBettencourt*</u>, WA Bainbridge*, MD Rosenberg* (2022) Predicting visual memory across images and within individuals. *Cognition*
- PA Keene^{*}, <u>MT deBettencourt^{*}</u>, E Awh, EK Vogel (2022) Pupillometry signatures of sustained attention and working memory. *Attention, Perception, & Psychophysics*