
and we have reason to believe that these times are relevant to the 
activity in the brain. The amplitudes of the regressor events are 
constant so there is no uncertainty in terms of their magnitude – 
i.e., a constant scale would not change the GLM analysis. We could 
also construct regressors derived from behavioral measures, such 
as response time (RT), and though this may vary across trial and 
subject, we can measure RTs very accurately and thus measure-
ment noise is low. However there is additional uncertainty in the 
interpretation of the amplitude variations. For example a long RT 
(e.g., high amplitude on a trial) might be caused by attentional 
lapses, natural alertness fluctuations, or additional neural process-
ing for increasing decision confidence. Thus, compared to the case 
in Figure 1A, the behavioral regressor in Figure 1B could be seen 
as having greater uncertainty.

When constructing regressors derived from EEG variability 
(Figure 1C), we must consider a number of factors affecting our 
uncertainty. One is related to the noise in the measurements – i.e., 
EEG has roughly a −20 dB signal to noise ratio (SNR; Parra et al., 
2008). Thus we have measurement noise that is greater than for the 
cases seen in Figures 1A,B. Secondly, there is the interpretation of 
the meaning of the EEG-derived variability. We might hypothesize 
that the variability relates to attentional modulation, workload, 
perceived error strength, etc., but this too is a hypothesis with its 
own noise/uncertainty – similar to the issue for the RT derived 
regressor of Figure 1B.

In order to take the uncertainty in the prior into account, we 
could resample from the prior distribution to construct our null 
hypothesis (H0). There are many ways to resample or bootstrap 
(e.g., for a review of techniques in signal processing see (Zoubir 
and Iskander, 2007). One of the simplest is to draw samples 

IntroductIon
It is becoming increasingly common to use single-trial EEG-derived 
values to model simultaneously acquired fMRI data. The combina-
tion of these two complementary neuroimaging modalities enables 
the variability of neural activity to be related to the blood oxygena-
tion level dependent (BOLD) response (e.g., Debener et al., 2005; 
Benar et al., 2007; Goldman et al., 2009). Particularly exciting is 
that this type of fusion of modalities exploits variability that is not 
observable via behavioral responses, and thus provides a window 
into latent states of the human brain.

Many efforts combining simultaneous EEG and fMRI in this 
way employ the general linear model (GLM; Worsley and Friston, 
1995). The GLM is a univariate approach which, when applied to 
massive datasets such as fMRI, requires correcting the statistics 
for multiple comparisons in order to properly perform hypothesis 
testing. The issue of multiple comparison correction has been 
addressed extensively in the literature and there are a number 
of procedures that have been adopted, both for fMRI analysis 
alone (Genovese et al., 2002; Nichols and Hayasaka, 2003) and 
for simultaneous EEG/fMRI (Debener et al., 2005; Eichele et al., 
2005; Benar et al., 2007; Esposito et al., 2009; Goldman et al., 
2009; Mayhew et al., 2010; Mulert et al., 2010; Scheibe et al., 2010; 
Novitskiy et al., 2011).

One concern that is specific to using the variability of EEG-
derived regressors is the added uncertainty in the “interpretation” 
of the resulting statistics within the context of statistical paramet-
ric maps. This can be easily seen if we consider the sources of 
uncertainty for different types of regressors. In conventional fMRI, 
regressors might be constructed based on the timing of the stimulus 
presented to the subject (see Figure 1A). We know the times exactly 
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from a distribution of the noise by permuting or randomizing 
the EEG-derived variability. In previous work we used a simple 
resampling procedure to compute cluster thresholds for correct-
ing for multiple comparisons (Goldman et al., 2009). However 
this method for estimating a cluster size threshold was limited 
because it sacrificed sensitivity for overly conservative specificity. 
Here we expand this work to a more exhaustive search of the 
parameter spaces by developing a better representation of the 
relationship between characteristics of the data. This enables 
us to maintain both sensitivity and specificity over a range of 
cluster sizes.

We present these results for two such characteristics: cluster 
size and maximum z-score within a cluster. We use the rela-
tionship between them to correct for multiple comparisons 
by trading-off z-score for cluster size. Specifically, we pro-
pose a resampling technique, adapted to the noise distribu-
tion of the single-trial EEG-derived regressors, that enables 
increased sensitivity by identifying significance values that are 
a joint function of cluster size and maximum z-score – i.e., 
enables us to construct the null hypothesis H0 and set a joint 
threshold to test significance. This approach increases sensi-
tivity by allowing smaller clusters having higher z-score, while 
maintaining specificity.

MaterIals and Methods
The data used in this study are taken from Goldman et al. (2009). 
Detailed methods of subjects, paradigm, data acquisition, and sin-
gle-trial analysis are given there (Goldman et al., 2009). In brief, 
simultaneous EEG and fMRI data were acquired for 11 healthy 
normal subjects (six female, mean age 31, range 25–38) during an 
auditory oddball paradigm. Informed consent was obtained from 
all participants in accordance with the guidelines and approval of 
the Columbia University Institutional Review Board.

Subjects listened to standard (frequency 350 Hz, probability of 
occurrence 0.8) and oddball tones (frequency 500 Hz, probability of 
occurrence 0.2). Subjects were instructed to respond with a button 
press to the target oddball tone. There were a total of 50 target and 
200 standard trials for each subject.

EEG was acquired simultaneously with fMRI using a custom-
built MR-compatible system using 36 bipolar twisted pair elec-
trodes sampled at 1 kHz (Goldman et al., 2005; Sajda et al., 2007) 
in a 1.5-T scanner (Philips Medical Systems, Bothell, WA, USA). 
Whole brain functional EPI data were acquired with 15 axial slices 
(TE = 50 ms; TR = 3000 ms; matrix = 64 × 64 voxels, 3.125 mm 
in-plane resolution, 8 mm thickness). EEG pre-processing included 
a 0.5-Hz high-pass filter, 60 and 120 Hz notch filters, and gradi-
ent artifact removal (mean subtraction as well as 10 ms median 
filter). BCG artifacts were removed by principal component analysis 
(PCA) by first estimating the principal components on data after 
high-pass filtering at 4 Hz and then applying these estimates to the 
original EEG. The EEG data was epoched into trials in two ways: 
stimulus-locked (SL, aligned to the onset of the tone) and response-
locked (RL, for the target tones, they were aligned to the subject’s 
button press and for the standard tones they were randomly chosen 
from the RT distribution of the target tones). Individual subject 
single-trial analysis of EEG was then performed via logistic regres-
sion to discriminate between the EEG responses to two classes of 
stimuli (targets and standards) within consecutive 50 ms training 
windows. The output of this process is a discriminating component, 
y, specific to that trial and discriminating window, where y repre-
sents the distance to the discriminating hyperplane (Parra et al., 
2002, 2005; Goldman et al., 2009). The amplitudes of the resulting 
discriminating components within the training window for each SL 
and RL window were then used to model the BOLD response on a 
single-trial basis. Figure 2 illustrates our approach, mapping from 
trial-to-trial variability in EEG components to fMRI regressors (in 
this case using time windows of 200 and 350 ms post-stimulus).

resaMplIng
Our goal in the resampling was to maintain the overall distributions 
of the EEG discriminating components (y-values) for target and 
standard trials while removing the specific trial-to-trial correlations 
in the individual experimental runs. To this end, we constructed 
two empirical distributions (one for “target y-values” and one for 
“standard y-values”) by pooling the y-values for each condition 
across all subjects and runs. To best demonstrate the contribu-
tion of the trial-to-trial variability, we constructed our empirical 
distributions using y-values from only behaviorally correct trials 
and computed from a time window (450 ms SL) which yielded 
both substantial discrimination in the EEG (across subject, average 

RT1 RT2 RT3 

electrophysiological variability 

1 2
3

A

B

C

FIGuRE 1 | Sources of uncertainty in different regressor models. Shown are 
three regressor types (before convolution with the hemodynamic response 
function). (A) Regressor constructed from the onset times of the stimulus. The 
high certainty in this type of regressor is a result of stimulus times being set by 
the experiment and measured exactly. There is no uncertainty in the 
interpretation of amplitudes since they are constant. (B) Regressor constructed 
by modulating the stimulus onset times by response times (RTs). Measurement 
noise of RTs is low (i.e., RTs are high SNR measurements) however there is 
additional uncertainty (relative to case A) in terms of the interpretation of the 
trial‑by‑trial variations in response time. (C) Regressor constructed by modulating 
stimulus by activity derived from electrophysiological variability. Sources of 
uncertainty include both measurement noise, due to the low SNR of the signal, 
as well as the interpretation of the trial‑to‑trial electrophysiological variability.
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These procedures allowed us to construct the null hypothesis H0, 
and establish a joint threshold on cluster size and max z-score 
(see below).

fMrI analysIs
For each of the 100 resampled iterations, a full three-level analysis 
(run, subject, group) was performed. Standard fMRI pre-processing 
was performed: slice-timing correction, motion correction, spatial 
smoothing at 8 mm full-width at half-maximum, and high-pass 
filtering at 0.01 Hz. Our design matrix included 11 regressors, six of 
which related to the degrees of motion correction. Of the remaining 
five regressors (which were convolved with a double-gamma hemo-
dynamic response function), two were a traditional event-related 
model of target and standard tones (onset at the time of stimulus 
presentation, duration 100 ms, amplitude of 1), one represented 
the RTs (with onset at the time of stimulus  presentation, duration 

Az > 0.75; Figure 2 in Goldman et al., 2009) as well as significant 
correlation in the fMRI (p < 0.005 and cluster corrected for com-
parison of <73 voxels; Figure 2 in Goldman et al., 2009).

Given these empirical distributions, we constructed a “resa-
mpled run” by taking the ordered vector of targets and standard 
trials (250 trials per subject, with 50 targets and 200 standards 
intermixed) and drew randomly, without replacement, from 
the distribution corresponding to the label of that trial. Thus 
for a resampled run, all trials were drawn from the distribution 
with the correct “label” (target or standard) however the specific 
y-value was mixed between trials, runs and subjects. All sub-
jects had the same resampled run y-values for a given iteration, 
though the resulting regressors for each subject were different 
given that the each had a random sequence of target and stand-
ard trials. This entire procedure was repeated 100 times, yield-
ing 100 resamplings of the entire data set (run, subject, group). 
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FIGuRE 2 | Method used to construct fMRI regressors from EEG 
component trial-to-trial variability. Top: y‑values for all target trials of the 
single‑trial EEG discriminator for two stimulus‑locked windows. Data between 
black vertical bars indicates those y‑values used in the analysis. In this example 
the window width is 50 ms, with one window centered at 200 ms and the other 
at 350 ms post stimulus‑onset. Hot to cold color scale indicates high likelihood 
to low likelihood for a target. Middle: y‑value for a single target trial for each of 
the two components (black curves), showing the fMRI event model amplitude 

as the average of the discriminator output within each 50 ms window, with one 
modulated event shown for 200 ms (blue) and 350 ms (red). Bottom: Single‑trial 
fMRI regressor for target trials across the entire session for the 200 and 350 ms 
windows, shown after convolution with the hemodynamic response function. 
Note that the event timing for each of the two windows is the same, but the 
event amplitudes are different. A separate fMRI analysis is run for each window, 
using that window’s single‑trial output to model single‑trial variability. Figure 
from Goldman et al. (2009).
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cluster sIze threshold
We examined the distribution of cluster sizes (number of voxels) 
for the resampled data and used these data to establish adaptive 
thresholds. The largest 1% (n = 6 of 655) of the resampled data had 
a cluster size that exceeded 94 voxels. The largest 5% (n = 32 of 655) 
of the resampled data clusters had a cluster size that exceeded 50 
voxels. These thresholds were then applied to the clusters observed 
in the original data, which represent regions where BOLD signal 
correlated with either SL or RL single-trial EEG variability. The 
relationship between the resampled and original data is depicted 
in Figure 3. This figure indicates that there were only three clus-
ters from the original data that exceeded the p < 0.01 resampled 
significance threshold of 94 voxels. Further, these three clusters 
were the only ones that exceeded the p < 0.05 resampled signifi-
cance threshold of 50 voxels. Two of those activations were seen 
in the right lateral occipital cortex (Table 1, clusters 1 and 2). One 
cluster was found in the left postcentral gyrus (Table 1, cluster 3). 
Twenty-six percent (22 of 85) of the original clusters exceeded a 
canonical 10 voxel threshold. Thirty-seven percent (244 of 655) of 
the resampled clusters exceeded that canonical 10 voxel threshold.

Max z-score threshold
We also plotted the distribution of maximum z-scores (the peak 
value within the clusters) for the resampled data and used these to 
establish adaptive thresholds. The upper 1% of the resampled data 
clusters had a z-score that exceeded 3.17, and the upper 5% had a 
z-score that exceeded 3.01. These thresholds were then applied to 
the z-scores from the original data. The relationship between the 
resampled and original data is depicted in Figure 4. This figure indi-
cates one cluster that exceeds the p < 0.01 resampled significance 
threshold of z = 3.17. This cluster was located in the right lateral 
occipital cortex (Table 1, cluster 1). The figure also indicates three 
additional clusters that exceed the p < 0.05 resampled significance 
threshold z = 3.01. These clusters were located in the right lateral 
occipital cortex (Table 1, cluster 2), and bilaterally in the amygdala 
(Table 1, clusters 4 and 5).

JoInt thresholds
The relationship between cluster size (log scale) and 1 − (p-value) 
for the resampled and original data is depicted in Figure 5. The 
linear regression visualizes the first principal component of the 
resampled data (n = 655). Significance values (p < 0.05 and <0.01) 
were determined by the projections to the regression line of the 
32nd and 6th largest resampled data clusters along this first prin-
cipal component. Significance thresholds, the orthogonal projec-
tions from regression line, intersected for p < 0.05 at a cluster size 
of 52 and a 1 − p-value of 0.998 [x

05
 = (52,0.998)] and for p < 0.01 

at a cluster size of 88 and a 1 − p-value of 0.999 [x
01

 = (88,0.999)]. 
Two clusters from the original data exceeded p < 0.01 significance 
(clusters 1 and 2) and three additional clusters exceeded p < 0.05 
significance (clusters 3, 4, and 5).

dIscussIon
Simultaneously acquired EEG and fMRI data offers the potential 
to investigate neural states with temporal and spatial precision 
that is not afforded by either method alone. However, while in 

100 ms, amplitude corresponding to RT), and the final two regres-
sors modeled the amplitude variability of the single-trial discrimi-
nating component (onset time at window time, duration 100 ms, 
amplitude given by the single-trial EEG discriminator y-value) 
and were orthogonalized to the traditional target and standard 
regressors. These single-trial regressors allowed us to examine the 
BOLD signal related to the variation in the resampled single-trial 
EEG discriminating component values. Specifically, we looked 
at the cluster outputs from the resampled single-trial target and 
standard regressors.

one-dIMensIonal thresholds
All clusters that exceeded minimal thresholds [cluster size of 
2 and z-score of 2.57 (per voxel p = 0.005)] from all 100 itera-
tions were assembled for both positive and negative correlations 
for the resampled single-trial targets. Two characteristics of the 
resampled data were obtained: cluster size (number of voxels) 
and z-score (maximum value in cluster). The resampled data 
were sorted and thresholds were established based on the top 
5% and top 1%. Canonical thresholds were also used: 10 voxel 
cluster size and 2.57 z-score. The results from the analysis of 
single-trial simultaneous EEG/fMRI from Goldman et al. (2009) 
were overlaid to examine those clusters that exceeded each of 
these thresholds.

constructIng JoInt thresholds
We developed an approach for increasing the sensitivity for smaller 
cluster sizes by constructing a significance threshold based on 
the joint distribution of cluster size and maximum z-score. Our 
approach was to identify a joint distribution, based on these two 
measures, that showed a strong positive linear correlation which 
could be used to construct a one-dimensional projection for thresh-
olding which was a function of both dimensions. We found that the 
log cluster size versus 1 − (maximum p-value in the cluster) resulted 
in a strong linear fit (Pearson’s correlation coefficient r = 0.88) for 
all resampled clusters that exceeded the minimal thresholds [cluster 
size of 2 and z-score of 2.57 (per voxel p = 0.005)]. The projec-
tions of the resampled activations along this linear regression were 
sorted to obtain the maximal 5 and 1%. Significance thresholds 
(p = 0.05 and 0.01) were defined by orthogonal projections from 
this linear fit of the resampled activations. The results from the 
analysis of single-trial simultaneous EEG/fMRI from Goldman 
et al. (2009) were overlaid to examine those clusters that exceeded 
both of these thresholds.

results
statIstIcs
There were 655 clusters with a per-voxel p < 0.005 that survived 
the minimum cluster threshold of two voxels in the resampled 
analysis. The mean cluster size was 14 voxels with a standard devia-
tion of 18. The mean z-score within these clusters was 2.8 and 
the standard deviation was 0.14. The clusters from the resampled 
analysis were overlaid onto a standard MNI template brain volume 
to ensure that clusters of activation from resampling came from 
regions throughout the brain and did not represent the same cluster 
(data not shown).
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activated cluster size and local maximum z-score and showed that 
the joint distribution of the size of activation clusters and the maxi-
mum z-score found in the cluster can be used to establish signifi-
cance thresholds that provide a proper trade-off of sensitivity and 
specificity. Principled methods for trading-off spatial extent and 
individual voxel statistical significance were originally proposed 
for use in neuroimaging by Poline et al. (1997).

Figure 6 graphically summarizes the results from Table 1 and also 
illustrates the improved sensitivity we obtained using the joint thresh-
old method. Compared to the results in Goldman et al. (2009), these 
results show additional significant correlations in areas that overlap 
with the amygdala. Though this current paper is meant as a statistical 
methods paper and is not aimed at  re-evaluating the specific findings 

 traditional event-related fMRI the model is known with high cer-
tainty, explanatory variables defined by a measured quantity such as 
EEG introduce more uncertainty into the model. While it is becom-
ing increasingly common to acquire multi-modal data, as yet there 
is no generally agreed upon method for analysis or interpretation 
of this data that takes the uncertainty of the model into account.

In this study, we used the data from Goldman et al. (2009), in 
which the single-trial variability derived from the EEG was used to 
construct BOLD fMRI regressors, to illustrate a resampling method 
for determining significance in single-trial EEG/fMRI data. With 
this method, we can correct for multiple comparisons by adaptively 
resampling the noise distribution of the EEG-derived regressors. 
This resampling method demonstrated an interaction between 

Table 1 | Significant clusters of activation in the original data of Goldman et al. (2009).

Index Cluster z-score 1 − (p-value)  Hemisphere Location (MNI)  Brain   EEG single-trial logistic 

 size  (joint threshold)        region   regression results

     x y z   Correlation Az Locked to Window

1 203 3.42 0.9997 R 40 −74 −8 Lateral occipital cortex – 0.92 Response 50

2 108 3.04 0.9988 R 42 −68 −4 Lateral occipital cortex – 0.86 Response 150

3 101 3.01 0.9987 L −28 −36 60 Postcentral gyrus – 0.76 Stimulus 450

4 46 3.17 0.9992 R 12 −4 −18 Amygdala + 0.83 Response 200

5 44 3.14 0.9992 L −32 2 −18 Amygdala – 0.79 Response −100

Index is a number to uniquely identify the cluster for later reference. Cluster size is given in number of voxels. For the one-dimensional thresholds, the background 
color (yellow, p < 0.01; red, p < 0.05) indicates if the cluster was significant in the corresponding column. For the joint threshold, the background color in the 
1 − p-value column indicates the significance. Cluster location is given by hemisphere (R, right; L, left), location of the peak z-score (x, y, z in MNI space), and brain 
region. Also shown for each cluster is the direction of correlation between single-trial regressor and BOLD signal (−, +), Az value for the single-trial window, whether 
the window was locked to stimulus onset or response time, and the window onset time in milliseconds.
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FIGuRE 3 | The resampling method, used to generate the threshold based on 
cluster size. The resampled data (blue) are sorted and plotted in increasing cluster 
size (number of voxels). Three significance thresholds are presented: 10 voxel 
canonical cluster threshold (black solid line), p = 0.05 resampled significance 

threshold (red solid line), and p = 0.01 resampled significance threshold (yellow 
solid line). Horizontal dashed lines show the cluster sizes of the original data from 
Goldman et al. (2009), both those below (green) and the three clusters that 
exceed (yellow) the resampled cluster size significance threshold (p < 0.01).
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FIGuRE 4 | The resampling method, used to generate thresholds based on the 
maximum z-score within the cluster. The resampled data (in blue) are sorted and 
plotted in increasing z‑score. Horizontal dashed lines of the z‑scores of the original 
data are overlaid (in green). Three significance thresholds are shown: z = 2.57 

threshold (black), p = 0.05 resampled significance threshold (red), and p = 0.01 
resampled significance threshold (yellow). The dashed lines of the four clusters from 
the original data of Goldman et al. (2009), that exceed significance thresholds are 
colored accordingly: three for which p < 0.05 (red) and one for which p < 0.01 (yellow).
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FIGuRE 5 | Joint thresholds of cluster size (log scale) versus p-value 
(maximum of cluster) from resampling methods. Shown are scatter plots of 
cluster size versus p‑value of the resampled data (blue open circles) and the 
original data of Goldman et al. (2009; green filled circles). Two joint significance 

thresholds are shown: p = 0.05 resampled significance threshold (red), and 
p = 0.01 resampled significance threshold (yellow). Those clusters from the 
original data that exceed the joint significance thresholds are colored 
accordingly.

of Goldman et al. (2009), it is worth noting that the responses in the 
amygdala have been observed, intracranially, for activity associated 
with P300 timing and polarity (Halgren et al., 1980).

Projection of the data onto the first principal component of this 
distribution allows us to simply compute a joint threshold for a one-
sided significance level. One might ask “why not use the full distri-
bution instead of the projection on the first principle  component?” 

For example, one might imagine trying to empirically construct a 
one-sided multivariate test of significance by constructing contours 
of fixed probability mass about the mean and then utilize the contour 
cutoff so that an increase in single-voxel significance always yields a 
decrease in voxel size, and vice versa. Though such a procedure seems 
to be even more powerful than simply looking at the one-dimensional 
projection, it comes with the following disadvantages/costs. First it 
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slices of an MNI template brain image. Each row corresponds to a different 
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threshold, (B) maximum z‑score based threshold, (C) joint threshold. Sampled slices 
not shown (slices sampled every 6 mm) had no significant clusters for any of the 
thresholding techniques. See Table 1 for additional information on these clusters.
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