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Our ability to maintain a consistent attentional state is essential to many aspects of daily life. Still, despite
our best efforts, attention naturally fluctuates between more and less vigilant states. Previous work has
shown that offering performance-based rewards or incentives can help to buffer against attentional lapses.
However, such work is generally focused on long timescales and, critically, does not dissociate between
task-based motivation (i.e., where reward is contingent on attention performance) versus more generic
motivation or arousal accounts of reward effects. Here, we investigated the influence of reward feedback on
attentional vigilance during a simultaneous sustained attention and reinforcement learning (RL) task.
Crucially, rewards were tied only to the RL task rather than to attentional performance. We assessed the
impact of two core components of RL—reward and surprise—on short-term fluctuations in attentional
vigilance. In two experiments (N = 161), we demonstrated that intermittent, attention-independent rewards
transiently boosted vigilance on a timescale of seconds. We did not find consistent evidence that surprises
modulated vigilance. In a third experiment (N = 135), we observed that even passively received rewards
elicit transient boosts in sustained attention. Together, these findings suggest that rewards transiently buffer
against attentional lapses to improve vigilance, likely through generic increases in arousal or motivation.
These results point to a fundamental relationship between reward and sustained attention.

Public Significance Statement
The waxing and waning of attention is a common experience in daily life. Fluctuations in attention have
consequences for cognition and behavior—maintaining a focused attentional state can facilitate learning
or support efficient action, whereas lapses in attention can lead to forgetting or errors. Understanding what
factors impact the stability of sustained attention has far-reaching implications, from classrooms to operating
rooms. In three behavioral studies, we investigate how reward feedback interacts with fluctuations in
sustained attention over short timescales. Broadly, we find that sustained attentionwas transiently enhanced
after receiving positive, as compared to negative, feedback, even when the feedback was not contingent on
attentional performance. This work highlights one factor that can be leveraged to support sustained
attention.
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Imagine practicing a difficult new piece of music on the piano.
As you monitor your performance, your attentional vigilance will
naturally fluctuate between higher (more vigilant) and lower (less
vigilant) states (e.g., Esterman & Rothlein, 2019). Attentional state
has important consequences for other cognitive processes, including
learning, memory encoding, and memory retrieval (deBettencourt
et al., 2018; A. Decker, Dubois, et al., 2023; A. L. Decker, Duncan,
& Finn, 2023; Madore et al., 2020). But how attentional vigilance is
itself shaped by events in the world is not fully understood.We focus
here on one such class of events—reward feedback—asking if the
experience of reward (e.g., the sound of playing a musical phrase
perfectly vs. poorly) might transiently influence one’s attentional
state, even when reward is not directly tied to attentional vigilance.
Multiple previous experiments have shown that attention-

contingent rewards can affect vigilance: Offering incentives to
participants based on their performance in vigilance tasks reliably
boosts vigilance performance (Bergum & Lehr, 1964; Esterman
et al., 2014, 2016, 2017; Massar et al., 2016; Robison et al., 2021).
Generally, such work uses psychometric vigilance tasks (Ariga &
Lleras, 2011; Basner & Dinges, 2011; Lim & Dinges, 2008) or
variants of continuous performance tasks (deBettencourt et al.,
2018; Esterman et al., 2013, 2014, 2016; Esterman & Rothlein,
2019; Manly et al., 1999) to behaviorally track sustained attention.
In one example, Esterman et al. (2014) found that participants who
were incentivized with money (or a shortened task duration) were
more accurate and showed more consistent response times on a
continuous performance task designed tomeasure sustained attention.
This type of effect has since been replicated (Esterman et al.,
2016; Robison et al., 2021), providing substantive evidence that
offering performance-based rewards can boost sustained attention
performance.
Such links between reward and sustained attention have

important theoretical implications. The positive role of reward in
sustained attention is consistent with “cost–benefit” models of
sustained attention (Kool & Botvinick, 2014; Kool et al., 2017;
Kurzban et al., 2013; Thomson et al., 2015). In these models,
attention wanes when the cost of maintaining a consistent attentional
state in a task—namely, the opportunity cost of not attending to
other things (e.g., mind-wandering, other potential tasks) or the
effort cost of exerting control to stay attentive—outweighs the
benefits (Kool et al., 2017; Kurzban et al., 2013). These models are
often contrasted with “resource” theories of sustained attention,
which posit that lapses arise from the depletion of a limited cognitive
resource that is needed to maintain vigilance (Helton & Russell,
2011, 2013; Helton & Warm, 2008; Muraven & Baumeister, 2000;
Warm et al., 2008). Resource theories of sustained attention do not
clearly predict reward-related enhancements of sustained attention,
as external rewards should not be able to alter the reserves of a finite
cognitive resource. However, cost–benefit models of sustained
attention assume that performance-based incentives reduce lapses
because such incentives directly increase the value of sustaining
attention, thus motivating participants to exert more control.
Therefore, the current view of the link between reward and sustained
attention is that rewards can alter people’s estimate of the value of
sustaining attention and thereby improve performance.
However, the finding that directly rewarding attention perfor-

mance boosts performance is arguably somewhat inevitable; indeed,
rewarding most behaviors sharpens or improves them. An additional
explanation for positive effects of reward on sustained attention is

that reward induces a more generic motivation or arousal effect,
one that carries over into attentional processes. That is, when we
receive a reward from the environment, it may induce a general,
transient boost to attention. This idea fits with several findings from
the neuroscience literature, including studies showing that neural
signals correlated with reward can induce rapid downstream effects
on attentional state and drive activity in key attention networks in the
brain (Anderson et al., 2016; Sara, 2009; Zhang et al., 2023). In
particular, noradrenergic activity in the locus coeruleus, which is
associated with attention and arousal (Unsworth & Robison, 2017)
and effort mobilization (Unsworth et al., 2022), is also involved in
reward processing (Sara, 2009). These findings point to potential
mechanisms by which reward automatically influences sustained
attention in amanner that goes beyond the more value-based accounts
prevalent in the literature. While this generic effect is not mutually
exclusive of a “top-down” cost–benefit explanation, it remains to be
thoroughly tested.

An additional limitation of previous work is that the effects of
reward on sustained attention have been largely reported at the
task “block” level, which spans dozens of minutes or more (Esterman
et al., 2014, 2016, 2017; Robison et al., 2021). Often, this long-
timescale approach is used to model gradual decrements in vigilance
over time (e.g., cognitive fatigue). Sustained attention, however, also
fluctuates at short timescales concurrently with overall vigilance
decrements (Esterman & Rothlein, 2019). Studying a more transient
relationship between reward and sustained attention necessitates
capturing sustained attention performance on shorter timescales.

Here, we designed a task where rewards were not contingent on
attention performance and were received intermittently during a
sustained attention task. We developed a novel hybrid task that
integrated a continuous performance attention task with an
instrumental reinforcement learning (RL) task. During this hybrid
task, participants performed blocks of a sustained attention task
interleaved with individual trials of an RL task where they could
receive reward feedback, and where reward feedback was related
only to the RL task rather than performance on the attention task.
Our main analyses investigated the impact of reward on people’s
performance during intervening blocks of attention trials. The
task was also designed to assess the impact of both reward
prediction error and surprise—two core constructs in RL—on
moment-by-moment sustained attention.

We hypothesized two potential interactions between reward
feedback during reinforcement learning and sustained attention. One
possibility is that reward feedback in our hybrid task would have no
impact on subsequent sustained attention performance. This pattern
of results would suggest that reward-related boosts in sustained
attention documented in the literature are driven by the increased
value of sustained attention when it is directly yoked to reward. In
other words, this finding would provide evidence that rewards must
directly and saliently increase the “payoff” of sustaining attention to
elicit a boost in performance. Alternatively, reward could influence
sustained attention in a global manner, where rewards boost
motivation and arousal and thus obligatorily impact sustained
attention. Using our modeling framework, additional hypotheses
were tested with respect to surprise (i.e., model-derived unsigned
reward prediction errors) and attention. In this way, we could
investigate the relationship between reward feedback and attentional
vigilance and shed light on the cognitive processes that link reward
processing and attention at the scale of seconds.
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In Experiments 1 and 2, we asked whether reward feedback
during RL influences one’s attentional state, and we found robust
evidence that rewards unrelated to the attention task transiently
enhanced vigilance over a matter of seconds. In Experiment 3, we
generalized this finding to passive (i.e., noninstrumental) rewards
and again observed a transient facilitation of attentional state. Taken
together, these results suggest that the experience of reward (relative
to reward omission) facilitates sustained attention even when those
rewards do not directly set the value of attentional vigilance. We
suggest that these effects reflect a fundamental relationship between
reward and attention, where the mere experience of reward rapidly
and globally heightens vigilance.

Experiment 1

Method

Participants

Thirty participants were recruited through the subject pool at Yale
University and took part in the study for course credit. Demographic
information was collected on a tablet during the consenting process.
Participants were asked to report their age, sex, and handedness after
reviewing the consent form. They were given the options “male,”
“female,” “intersex,” or “prefer not to say” to report sex. We did not
collect information about race.
Our sample size was selected a priori based on previous work with

hybrid sustained attention–memory tasks (deBettencourt et al.,
2018, 2019) and adjusted to account for possible performance-based

exclusions. We excluded one participant who responded to fewer
than 75% of the RL trials, and an additional participant whose
distribution of reward prediction errors did not allow us to do a
key analysis (see below), leaving us with a final sample of 28
participants (N = 18 reported female, N = 10 reported male;Mage =
19.71, SDage = 2.51). We planned to exclude participants who had
less than 75% accuracy on frequent trials or who made the same
motor response (i.e., chose the same shape) on>90% of the RL trials,
but no participants met these exclusion criteria.

Procedure

We interleaved blocks of a sustained attention task (deBettencourt
et al., 2019) with individual trials of a probabilistic RL task to
administer intermittent rewards during the learning of stimulus values
(Figure 1A). The task was programmed using jsPsych (de Leeuw,
2015) and was performed on a Lenovo Ideapad 5 (Ubuntu 22.04).

On sustained attention task trials, participants saw two adjacent
shapes on the screen that were either both orange or both blue with
a black fixation cross between them. Each shape was presented
on the same side throughout the task and counterbalanced across
participants. Participants used their left hand to indicate the color
of the shapes and were instructed about which action (key press)
corresponded to orange and which to blue at the onset of the task
(this assignment was counterbalanced across participants). Once the
participant made their response, the fixation cross turned white to
indicate that their response was registered; however, the stimuli
remained on the screen for 800 ms for each trial, regardless of
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Figure 1
Experiment 1: Task Design

Note. (A) Task schematic depicting frequent and infrequent sustained attention trials, as well as RL trials (choice and
feedback). Each attention trial was displayed for 800 ms, yielding blocks of approximately 20 s on average. The left hand was
used for attention trials and the right hand for RL trials. (B) Schematic of a trial sequence. Frequent sustained attention trials in
orange (in print, light gray), infrequent sustained attention trials in blue (in print, dark gray), and RL trials in black. Infrequent
trials never occurred immediately after RL trials. (C) Example reward schedule for shaped on RL trials. Shapes were either
associated with a .2 or a .8 probability of reward. Reward probabilities were reversed three times during the task. RL =
reinforcement learning. See the online article for the color version of this figure.
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whether the participant responded sooner than that cutoff. Thus, each
attention trial was always 800 ms in duration though participants
generally responded before the deadline. Trials in which they did
not make a response (4.8% of trials, ±7.2) were excluded from the
analysis.
Following the typical design of this variant of a sustained

attention task (deBettencourt et al., 2019), we varied the frequency
of the two colors in order to create “frequent” and “infrequent” (or
oddball) trials: one of the two stimulus colors occurred on 90% of
the attention trials (frequent trials), and the other appeared on the
remaining 10% of trials (infrequent trials). Thus, participants were
tasked with making one response onmost trials and occasionally had
to switch away from this prepotent response to respond correctly on
the infrequent trials. Participants were not explicitly informed of the
imbalance in the color frequencies.
Sustained attention trials occurred in pseudorandomized

blocks of 17–52 consecutive trials, and the length of each block
was not predictable (Figure 1B; average block length = 25 trials
[22.5 s], ±0.07). At the end of a given block, participants would be
presented with a RL trial. We used a probabilistic “two-arm bandit
task” to operationalize RL. To signal an RL trial, the shapes would
turn black, cueing the participant to now use their right hand to
select one of the two shapes (Figure 1A). Importantly, participants
used different hands to respond to the attention (left hand) versus
RL (right hand) trials. This design ensured that RL choices were
not simply driven by participants repeating the prepotent response
from the attention trials. There was no cue dissociating the trial
types other than the change of stimulus color to black.
On RL trials, participants had 1.5 s to make a choice. After they

made their response, they received feedback (shown for 750 ms) on
whether they received a reward on that trial. If they responded too late,
they were given feedback that read “Too Slow,” and these trials were
excluded from analysis. On rewarded trials, two yellow stars and
“+1” appeared above the shape that the participant chose (Figure 1A).
On unrewarded trials, two red Xs and “+0” appeared above the
shape that the participant chose. One shape was associated with
an 80% probability of reward, and the other was associated with a
20% probability of reward on individual trials. We implemented this
reward structure by generating a random number greater than 0 and
less than or equal to 1 once the participant had chosen a shape. On
trials where the participant chose the shape with a 20% chance of
reward, the random number had to be less than or equal to .2 for
them to get positive reward feedback. On trials where the participant
chose the shape with an 80% chance of reward, the random number
had to be less than or equal to .8 for them to receive positive reward
feedback.
There were 100 RL trials in total (and thus 100 intervening blocks

of attention trials), and the reward probabilities associated with each
shapewere reversed three times, after 25, 50, and 75 trials (Figure 1C).
We inserted these reversals so that participants had to continually
update the value of the two shapes throughout the task, rather than
simply perseverating on one of the two shapes that was initially
associated with a higher reward probability. Importantly, there was
no additional incentive (e.g., bonus money) associated with the
feedback or overall performance on RL trials—participants were
simply instructed to choose the shape that they thought was most
likely to yield positive reward feedback.
Following previous work, we used both accuracy on the infrequent

trials and the coefficient of variation (CV) of reaction time (RT)

on frequent trials (coefficient of variation = SD(RT)/M(RT)) to
operationalize sustained attention during the task (deBettencourt
et al., 2018, 2019; Esterman et al., 2016). Previous work has largely
used average RT or RT variability as an index of sustained attention.
Here, we opted to focus on RT variability as there is some evidence
that this metric is more closely linked to sustained attention (Esterman
et al., 2014; Esterman & Rothlein, 2019). Higher infrequent trial
accuracy and lower frequent trial RT variability (i.e., lower CV) are
both indicative of a vigilant attentional state relative to low accuracy
and high RT variability. We calculated accuracy and CV within each
block of attention trials to quantify attentional performance for our
analyses. For accuracy, we selected all infrequent trials during a given
block and calculated the mean accuracy; for CV, we selected all the
frequent trials during a block of attention trials and calculated CVover
those RTs. In addition to these block-level analyses, we conducted
post hoc finer timescale analyses on CV to further characterize
interactions between reward and sustained attention. To do this, we
divided each block of attention trials into equal-length early, middle,
and late phases. We then calculated CV in each of these phases,
yielding three CVmeasurements for each block of attention trials.We
note here that given the rarity of infrequent trials, this finer grained
analysis was not well-suited to the accuracy metric.

The task started with a short practice block for each individual
task, and then two short blocks with the two types of trials
interleaved. Participants then began the main task, which lasted
approximately 50 min. We pregenerated 10 trial sequences with
frequent, infrequent, and RL trials. Participants were randomly
assigned to one of the 10 trial sequences. These sequences were
constructed in a block-wise manner to ensure that each block of
trials had multiple infrequent attention trials and that block lengths
were sufficiently varied. To vary block lengths such that they were
not predictable to participants, we repeated a vector of all possible
block lengths until it was longer than the number of task blocks.
Then, we shuffled this vector and selected the appropriate number
of blocks. This process allowed participants to have similar overall
task length and distribution of attention trials, while still leaving the
placement of RL trials sufficiently unpredictable. RL trials always
occurred after frequent sustained attention trials, and blocks always
began with frequent attention trials. The mean number of frequent
attention trials, infrequent attention trials, and RL trials after
exclusions per participant was 2,112, 241, and 96, respectively.

Modeling

In addition to the effect of feedback valence on sustained attention,
we were interested in examining the relationship between sustained
attention and RL reward prediction error (RPE) computations, which
allowed us to dissociate reward valence and surprise. To that end, we
fit RL models to participants’ choices in the probabilistic learning
task. We used standard Q-learning models, which updated action
values according to a simple δ rule (Rescorla & Wagner, 1972):

QðsÞt+ 1 = QðsÞt + αδ, (1)

δ = rt − QðsÞt: (2)

Here, Q(s)t reflects the expected value of stimulus s on trial t (i.e.,
the reward probability associated with stimulus s at time t), α reflects
the learning rate, and δ reflects the RPE (Equation 1). RPE is defined
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as the difference between the observed reward (r) and the expected
value given the choice of stimulus s (Equation 2). Thus, on a given
trial, the expected value for the chosen stimulus (Q(s)t) is updated
based on the discrepancy between the received reward and the
current expected value of the stimulus, scaled by the learning rate.
If the reward feedback was greater than Q(s)t, the RPE would be
positive and lead to an increase in the expected value of that
stimulus after the update. In contrast, if reward feedback was less
than Q(s)t, the RPE is negative and Q(s)t+1 will decrease relative to
Q(s)t. While reward feedback is binary, RPEs can vary continuously
between −1 and 1 since they are derived from the difference
between the binary feedback and the incrementally updated Q
values that participants continuously learn.
Action selection between the two presented stimuli was modeled

using the softmax function (Equation 3; Daw, 2011):

pðsÞ = expðβQðsÞÞ=
X

i

expðβQðsiÞÞ, (3)

where β reflects the softmax inverse temperature. During fitting, α
was constrained on [0, 1] and β on [0, 50], and a Gamma (2,3) prior
distribution was used to discourage extreme values of β (following
Leong et al., 2017).
Each participant’s choice data were fit separately to obtain unique

learning rates, inverse temperature parameters, and quality of fit
metrics (Akaike information criterion [AIC]). We fit two variants of
this model, one where a single learning rate was used for all trials
and another that allowed asymmetric learning rates for unrewarded
versus rewarded trials (Collins & Frank, 2014; Daw et al., 2002;
Frank et al., 2007). We used the MATLAB (2022) function fmincon
to find parameter values that maximized the log posterior probability
of participants’ choice data given the model. Fitting runs were
conducted 200 times for each model for each participant to avoid
local minima during optimization, using different randomized
starting parameter values over each iteration. The resulting best fit
model was used in all further analyses. Model fit quality was
evaluated using the AIC (Akaike, 1974).
After model fitting, we used subject-specific fitted parameters

(rather than average parameters across participants) to simulate the
RPEs that participants putatively experienced on each RL trial to use
in further analyses. To do this, we initialized the Q value for each
stimulus at 0 and then incrementally updated the Q values for each
stimulus based on the order of choices the participants made and the
feedback that they received on each RL trial, using the model.
The RPE on a given trial was calculated as the difference between
the expected value of the chosen stimulus on that trial (Q(s)t) and the
received reward feedback (0 or 1). Trials where participants did not
respond in time were excluded and no updates to Q values were
performed on these trials. This process yielded trial-by-trial RPEs
for each participant that varied in valence (positive vs. negative)
and magnitude. We used RPE magnitude to estimate trial-by-trial
surprise.
We also used subject-specific parameters to simulate behavior

and depict model fits in Figure 2B. To do this, we used subject-
specific parameters to simulate participant choice time courses 100
times. We then calculated the mean probability of selecting the
optimal choice (the stimulus that currently held a higher probability
of reward) from these simulations. This process created subject-
specific learning curves reflecting the probability of making the

optimal choice across the length of the RL task.We took the average
across these subject-specific curves to obtain the model fit plot
shown in red in Figure 2B. Subject-wise model simulations (i.e.,
before averaging across participants) are depicted in Supplemental
Figure S1.

Analysis

Additional analyses were conducted in R (R Core Team, 2022).
Our variables of interest (accuracy on infrequent trials, coefficient of
variation in RT on frequent trials, and overall performance on the RL
task) were submitted to two-tailed paired t tests (where appropriate),
and linear mixed-effects models. We used Pearson correlations to
examine the relationship between variables when both variables were
continuous and normally distributed and used Spearman correlations
for model-derived values or where assumptions of normality were
violated. Correlation coefficients were Fisher transformed before
performing t tests where necessary. We used Welch t tests were used
when equal variance was violated. We used Cohen’s d to quantify
effect sizes for t tests and report 95% confidence intervals (CI).
Linear and logistic mixed-effects models were conducted and tested
using the lme4 and lmerTest packages in R.

We conducted primary analyses on both raw and detrended
sustained attention metrics to fully examine the short-timescale
interactions betweenRL and sustained attention. Crucially, detrending
removes the well-known effect of overall worsening sustained
attention performance over the course of an experimental session
(“vigilance decrement”), allowing us to isolate the types of low-level
fluctuations that we are interested in (e.g., A. Decker, Dubois, et al.,
2023). To do this, we used the detrend function from the pracma
library in R to linearly detrend infrequent trial accuracy and frequent
trial CV for each subject. We used this same function to detrend finer
timescale CV metrics as well.

We include tables of descriptive statistics of our main measure-
ments of interest in the Supplemental Material to this article. In this
summary analysis, we calculated split-half reliability for the CV and
accuracymeasures. We opted to divide the data in half by comparing
these measures in odd versus even blocks, instead of comparing
first half versus second half, as sustained attention performance is
known to gradually deteriorate over the course of a task. To do this
analysis, we calculated the average CV and accuracy (both raw
and detrended) for odd and even blocks of trials separately. Then,
we did a between-subjects Spearman correlation to evaluate the
reliability of these metrics over the course of the task. The ρ value
from that comparison is listed in the descriptive statistics tables in
the Supplemental Material.

Transparency and Openness

This study was not preregistered.We include details about sample
size and participant exclusions, as well as methodological details to
facilitate future replication. Data and analysis code are available at
https://github.com/jetrach/SARL_2024.

Results

Participants’ performance on the sustained attention task replicated
previous studies that implemented a similar task (deBettencourt et al.,
2019): Participants were significantly more accurate on frequent
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trials (M = 94.5%, SD = 7.8%) than on infrequent trials,M = 53.8%,
SD= 13.6%; contrast: t(27)= 15.3, p< .001, d= 2.89, 95%CI [35.4,
46.2]; Figure 2A. We used two distinct metrics to quantify sustained
attention in each block of attention trials: the coefficient of variation
of RTs on frequent attention trials (coefficient of variation = standard
deviation of RT/mean of RT; Esterman et al., 2016) and accuracy on
infrequent attention trials (deBettencourt et al., 2018, 2019). These
accuracy- and RT-based sustained attention metrics were correlated,
mean within-subject correlation between attention metrics = −.31 ±
.15; one-sample t test on Fisher transformed ρ values: t(27)=−10.45,
p< .001, d=−1.98, 95%CI [−0.4,−0.27], suggesting that theywere
likely capturing similar fluctuations in sustained attention. To further
validate these measures, we examined whether lapses in the RT
metric of sustained attention (i.e., high CV on frequent attention
trials) were associated with lapses in the accuracy metric (i.e.,
incorrect responses on infrequent attention trials). We compared CV
over the three frequent attention trials immediately preceding correct
versus incorrect responses to infrequent attention probes. If both
metrics are capturing attentional state, then we expect higher CVs
preceding incorrect responses to infrequent probes and lower CVs
preceding correct responses (deBettencourt et al., 2019). We found
that CV was indeed significantly higher preceding incorrect
responses to infrequent attention trials relative to CV before correct

responses, Figure 2D; paired-sample t test: t(27) = −6.87, p < .001,
d = 1.3, 95% CI [−0.08, −0.04]. This further indicates that both
metrics were capturing similar fluctuations in sustained attention
during the task.

Regarding RL performance, participants learned to select the
stimulus most likely to reward them throughout the task on RL trials,
M = 60.6% optimal choice, SD= 10.8%; t(27)= 5.14, p < .001, d=
0.97, 95% CI [12.6, 29.4], and did not show a bias to choose one
shape or action over the other across the task, paired-sample t test to
choose left versus right shape: t(27) = −0.51, p = .614. Figure 2B
depicts participants’ learning over the course of the task measured as
the probability of selecting the shape associated with a higher
probability of reward (for individual model fits, see Supplemental
Figure S1). We note that while choosing the more rewarding
stimulus 60% of the trials might appear low, the probabilistic nature
of the feedback and the multiple value reversals make this a
reasonable performance level.

To investigate a global relationship between RL and sustained
attention performance, we first correlated participants’mean sustained
attention performance (operationalized as their average accuracy on
the infrequent attention trials) and mean performance on the RL task
(operationalized as the total proportion of trials in which they chose
the shape associated with a higher reward probability). We found
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Figure 2
Experiment 1: Sustained Attention and RL Performance

Note. (A) Accuracy on frequent versus infrequent attention trials. (B) Validation analysis of
CV metric of attention. CV on three frequent trials preceding correct versus incorrect responses
to infrequent attention trials. (C) Learning curve for RL trials in black.Model fit is depicted in red
(in print, light gray). Dashed lines mark value reversals. (D) Correlation between performance on
attention trials (accuracy on infrequent trials) and performance on the RL trials (percent of RL
trials where the participant chose the shape with a higher reward probability). CV= coefficient of
variation; RL = reinforcement learning. See the online article for the color version of this figure.
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that sustained attention performance was significantly correlated
with RL performance as indexed by accuracy on infrequent attention
trials, Figure 2C; Pearson’s correlation: t(26) = 2.14, R = .39, p =
.042, 95% CI [0.016, 0.66]. The correlation between average
CV and RL performance, however, was not significant, Pearson’s
correlation: t(26) = −0.91, R = −.17, p = .373, 95% CI [−0.51,
0.21]. This coarse analysis provides initial evidence of a relationship
between RL and sustained attention in our integrated task. Further,
this finding suggests that participants were engaged in both tasks,
rather than there being a performance trade-off in this dual-task
paradigm.
Predictably, both metrics showed significant decrements over the

course of the task: Accuracy on infrequent trials was negatively
correlated with trial number, average within-subject Spearman’s
correlation: ρ = −.14 ± .16, one-sample t test on Fisher transformed
ρ values: μ = 0, t(27) = −4.45, p < .001, d = 0.84, 95% CI [−0.21,
−0.08], and CVwas positively correlated with trial number, average
within-subject Spearman correlation: ρ= .16 ± .19, one-sample t test
on Fisher transformed ρ values: μ = 0, t(27) = 4.52, p < .001, d =
0.85, 95% CI [0.09, 0.25]. These results are characteristic of
canonical vigilance decrements in sustained attention tasks (e.g.,
Esterman et al., 2013; Kurzban et al., 2013). To isolate the impact of
reward on fluctuations in attention for our primary short-timescale
analyses, we focus on detrended accuracy and CV metrics in all
subsequent analyses (see the Method section). We note that these
detrended metrics were similarly correlated, mean within-subject
correlation between detrended attention metrics = −.29 ± .15; one-
sample t test on Fisher transformed ρ values: μ = 0, t(27) = −9.79,
p < .001, d = 1.85, 95% CI [−0.38, −0.26].
We assessed the short-timescale effects of rewards on attentional

vigilance by comparing detrended attention performance after
rewarded versus unrewarded RL trials. Participants were more
accurate on infrequent attention trials that followed a rewarded RL
trial versus an unrewarded RL trial, Figure 3A; detrended accuracy
metric: t(27) = 4.72, p < .001, d = 0.89, mean difference = 0.049,
95% CI [0.027, 0.07]. Corroborating this effect, RT coefficients
of variation on frequent trials were significantly lower (i.e., less
variable) after rewarded versus unrewarded RL trials, Figure 3B;
detrended CV metric: t(27) = 3.22, p = .0033, d = 0.61, mean
difference = −0.024, 95% CI [−0.039, −0.008]. Both effects were
strong when using raw attention metrics as well, raw accuracy
metric: t(27) = 4.83, p < .001, d = 0.91, mean difference = 0.052,
95% CI [0.030, 0.075]; t(27) = 3.1, p = .004, d = 0.59, mean
difference= −0.023, 95%CI [−0.039, −0.008], despite the presence
of an overall performance decrement over the course of the task.
These results demonstrate that participants were significantly more
vigilant after receiving positive reward feedback, relative to neutral
feedback. Moreover, both effects provide robust evidence that
reward has a facilitatory effect on attentional vigilance at the single
trial level, on a subminute timescale, and, crucially, even when
reward is not contingent on attention performance. This finding
builds on previous results showing such an effect at much longer
task- or block-level timescales and with attention-contingent rewards
(Esterman et al., 2014, 2016, 2017; Robison et al., 2021). Therefore,
this result suggests that rewards can support sustained attention even
when the rewards do not specifically and directly increase the value
of attention task performance.
To examine the relationship between learning and attention

and quantify surprise during the task, we fit RL models to each

participant’s RL task data to obtain participant-specific learning
rates and inverse temperature parameters (see theMethod section for
modeling details). We fit two variants of an RL model (Equations 1
and 2), one in which a single learning rate was used to update value
representations for all outcome types and one where separate
learning rates were fit to rewarded and unrewarded outcomes
(Collins & Frank, 2014; Frank et al., 2007). Both models fit the data
well, though we observed a consistent advantage for the variant with
asymmetric learning rates (summed AIC for single learning rate
model = 3,215, summed AIC for two-learning rate model = 3,176).
We thus performed our main computational analyses using the
asymmetric learning rate model to approximate trial-by-trial
prediction errors (we note that the key results described below
were comparable when using the worse-fitting single-rate model).

The average fit of the RL model to participants’ behavior in the
RL task is shown in Figure 2B (with individual subject model fits in
Supplemental Figure S1). Consistent with the significant relation-
ship between behavioral measures of performance across the two
tasks, RL learning rates were significantly correlated with attention
task performance (positive learning rate: Spearman correlation: ρ =
.47, p = .012; negative learning rate: Spearman’s correlation: ρ =
.44, p = .021). The inverse temperature parameter was also

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 3
Experiment 1: Effect of Reward on Sustained Attention

Note. (A) Accuracy (detrended) on infrequent attention trials following
rewarded versus unrewarded reinforcement learning trials. All error bars
reflect 1 standard error of the mean. (B) RT variability (measured by detrended
coefficient of variation) on frequent attention trials following rewarded versus
unrewarded reinforcement learning trials. (C) Accuracy on infrequent trials
after large and small magnitude and positive/negative reward prediction errors
(RPEs), which were computed via our modeling analysis. Unrewarded trials
on left (red) and rewarded trials on right (blue). (D) RT variability (measured
by the coefficient of variation) on frequent attention trials after large and
small magnitude RPEs. NUnrewarded trials on left and rewarded trials on
right. CV = coefficient of variation; RT = reaction time. See the online article
for the color version of this figure.
** p < .01. *** p < .001.
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significantly correlated with attention task performance (Spearman’s
correlation: ρ = −.46, p = .015). Taken together, these correlations
provide model-driven evidence relating people’s performance on the
two interleaved tasks and indicate that participants who were better
learners also tended to maintain a better attentional state than poor
learners.
Next, we asked whether attention performance was affected by

the magnitude of prediction errors. To extract trial-by-trial RPEs
for each participant and quantify surprise, we simulated the best
fitting model using each participant’s observed sequence of choices
and optimized model parameters. We examined the impact of RPE
magnitude on sustained attention separately for rewarded and
unrewarded trials because of the large effect of reward on sustained
attention discussed previously. We first grouped attention blocks by
whether a rewarded or unrewarded trial occurred at the start of that
block. We then performed a median split on the RPEs associated
with those trials. In other words, we labeled RL trials as reflecting
four different outcomes: a “large” negative RPE, which reflects an
unpredicted lack of reward; a small negative RPE, which reflects a
less surprising lack of reward; a small positive RPE, which reflects
a predicted reward; and a large positive RPE, which reflects a
surprising reward. Although there were numerical differences, we
did not find evidence that large versus small RPEs differently
affected detrended accuracy on infrequent attention trials, Figure
3C; rewarded trials: t(27) = −1.68, p = .104, mean difference =
0.02, 95% CI [−0.05, 0.005]; unrewarded trials: t(27) = 1.62, p =
.116, mean difference = 0.03, 95% CI [−0.007, 0.06], nor detrended
CV, Figure 3D; rewarded trials: t(27) = −0.54, p = .595, mean
difference = −0.002, 95% CI [−0.05, 0.005]; unrewarded trials:
t(27) = −0.65, p = .52, mean difference = −0.006, 95% CI [−0.02,
0.01]. Thus, these results indicate that RPEmagnitude (i.e., surprise)
may not significantly impact attentional state above and beyond the
robust effects of reward itself.
Finally, to further investigate the relationship between RPE and

sustained attention, we used four linear mixed-effects models fit to
the detrended sustained attention metrics (accuracy on infrequent
trials or CV) with either trial-by-trial RPEs or with feedback valence
(+1 or +0) as predictors. All models included random intercepts and
slopes for each subject. We found that RPE and RPE valence were
both significant predictors of sustained attention (ts > 3.20, ps ≤
.001). However, we did not find evidence that including continuous
RPEs as the predictor variables improved model fit versus feedback
valance alone (accuracy ∼ reward: AIC = 1,378; accuracy ∼ RPE:
AIC = 1,384; CV ∼ reward: AIC = −3,030; CV ∼ RPE: AIC =
−3,023), suggesting that observed boosts in sustained attention were
primarily driven by the simple presence of reward. Taken together,
these results suggest that reward feedback temporarily increases
attentional vigilance, even when rewards are purely symbolic in
nature and unconnected to attentional performance.
What is the time course of this effect within the attention task

blocks? In post hoc analyses, we sought to characterize the effect of
reward feedback on attentional state at a finer timescale. To do this,
we divided each block of attention trials into three equal phases
(early, middle, late) and calculated CV on frequent trials within each
phase of each attention block.We then detrended this metric over the
full length of the experiment in the same way as the block-level CVs
(see the Method section). We compared the average CV in the early,
middle, and late phases of the attention blocks (each representing a
5.4–8.1 s window of time within a block) following rewarded versus

unrewarded RL trials, subtracting the average CV after unrewarded
trials from the average CV after rewards. This analysis revealed a
significant boost in sustained attention during the earliest attention
trials, early phase: one-sample t test: M = 0.036; t(27) = 3.57, p <
.001, d = 0.7, 95% CI [0.015, 0.056], that diminished over the
course of the block, middle phase: M = 0.018; one-sample t test:
t(27) = 2.35, p = .026, d = 0.44, 95% CI [0.002, 0.03], until
attention performance was not significantly affected by rewards the
end of the attention block, late phase:M = 0.003; one-sample t test:
t(27) = 0.26, p = .799, 95% CI [−0.019, 0.024]. This result suggests
that reward induces a transient boost in sustained attention—on
the order of several to a dozen seconds—that quickly diminishes
with time.

In addition to our planned analyses on the impact of reward and
surprise on attention, we conducted exploratory analyses concerning
the possible effects of sustained attention on RL performance. That
is, we asked whether sustained attention might affect ongoing RL
behavior in our task such that elevated sustained attention in a given
block predicts better choices on a subsequent RL trial. We tested this
hypothesis with logistic regression mixed-effects models, with
each of the detrended attention metrics as the predictor variable and
accuracy on the single subsequent RL trial (operationalized as
choosing the shape associated with the currently higher chance of
yielding reward) as the dependent variable. We did not observe a
significant effect in this direction (RL trial accuracy ∼ detrended
accuracy: fixed effect of accuracy on infrequent trials on RL
performance: B = 0.12, z = 0.95, p = .34; RL trial accuracy ∼
detrended CV: fixed effect of CV on RL performance: B = −0.16,
z = −0.61, p = .545). Thus, at least in the context of our integrated
task, the influence of rewards on sustained attention was robust,
while effects in the opposite direction were not detected.

Overall, the results of Experiment 1 provide evidence of a short-
timescale relationship between rewards earned via instrumental
learning and sustained attention. In contrast, we did not find
evidence that the surprise associated with those rewards (i.e.,
prediction error) influenced attention performance. These results
extend beyond motivational state-based accounts for the influence
of reward on sustained attention, implying a more rapid, dynamic
mechanism for this interaction that does not rely on rewards directly
modulating the value of attention performance.

Importantly, reward feedback is often not simply binary. In most
everyday cases of instrumental learning, reward is a scalar variable
that can take on a range of values (e.g., amounts of money, enjoyment
of different foods, subtle or effusive social encouragement). Thus, to
both replicate and extend the results of Experiment 1, in Experiment 2,
we implemented a modified task with continuous rewards and
recruited a large online sample, again investigating short-timescale
interactions between reward and sustained attention.

Experiment 2

Method

Participants

We recruited 146 participants from the online platform Prolific to
complete the study. Demographic information was collected via
participants’ records through Prolific. To report sex, participants were
asked “What is your sex, as recorded on legal/official documents?”
with the options “male” and “female” as responses. Participants were
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also asked about their ethnicity; however, we do not report that
information here for parity with demographic information collected in
Experiment 1.
Exclusion criteria were identical to those in Experiment 1. We

excluded participants that had less than 75% accuracy on frequent
trials (N = 8) or made responses on less than 75% of RL trials (i.e.,
<57 RL trials; N = 9), indicating that they were not engaged in the
task. In addition, we excluded two participants who made the same
response on RL trials for over 90% of trials, suggesting that they
were not trying to learn which shape would yield greater reward.
Several participants met more than one exclusion criterion and our
final sample included 133 participants (N = 44 reported female, N =
89 reported male; Mage = 32.7, SDage = 4.96).

Procedure

The online task closely resembled the task in Experiment 1 with
two main differences. First, we shortened the task to include only
76 RL trials for each participant. This change shortened the task
duration to approximately 30 min, making the task more amenable
to remote participation while still preserving sufficient data for our
analyses. Second, rather than having probabilistic binary reward
feedback on RL trials (+1 or +0), we varied rewards continuously
across positive and negative “point” values. During feedback,
participants saw the number of points they were awarded in the
center of the screen on a red circle if the point value was negative or a
green circle if the point value was positive (Figure 4A). In this task,
participants were instructed to choose the shape that they thought
would yield more points. The same two reward schedules were used
for all participants; however, the location and shape associated with
each reward schedule were counterbalanced across participants.
These reward schedules were generated by using a random walk
between −50 and 50 points to create a set of possible schedules.

The chosen schedules were selected to vary across positive and
negative point values and have multiple reversals in which shape
yielded more reward. Average point values for each schedule were
relatively equal as well (Schedule A: M = 0.013 points ± 11 SD;
Schedule B: M = 0.013 points ± 16 SD) to limit biases toward
choosing the stimulus that was overall more rewarding. Final reward
schedules varied between −35 and 29 points and are depicted in
Figure 4B.

Blocks of attention trials varied between 19 and 27 trials in length
(average block length = 23 trials [20.7 s], ±0.042 SD). We
pregenerated 10 sequences of frequent, infrequent, and RL trials in
the same way as in Experiment 1 in order to facilitate online data
collection. Each participant was randomly assigned to one of these
10 trial sequences. Overall, this yielded 1,517 frequent trials, 168
infrequent trials, and 75 RL trials on average after excluding trials
where participants did not respond (2.7% of trials excluded,
±3.6 SD).

Modeling

The modeling procedure was the same as in the previous
experiment. We note that the change in reward feedback from binary
feedback to points that span a wider range did not alter the modeling
approach; RPEs are calculated as the difference between received
and expected reward (see Equation 2). Participants’ choices were fit
individually to capture subject-specific learning parameters. As in
Experiment 1, we used these subject-specific parameters to
simulate RPEs on each trial. Additionally, we used these subject-
specific parameters to simulate behavior and plot model fit in
Figure 5D using the same procedure as in Experiment 1.

Analysis

We followed the same analysis plan for Experiment 2 as detailed
in the Methods section of Experiment 1.

Transparency and Openness

This study was not preregistered.We include details about sample
size and participant exclusions, as well as methodological details to
facilitate future replication. Data and analysis code are available at
https://github.com/jetrach/SARL_2024.

Results

Attention task performance was comparable to Experiment 1:
Participants were more accurate on frequent trials (M= 96.7%, SD=
4.08%) than they were on infrequent trials, M = 66.8%, SD =
15.7%; two-sample paired t test: t(132) = 24.07, p < .001, d = 2.09,
95% CI [0.27, 0.32]; Figure 5A, replicating previous studies with a
similar attention task (deBettencourt et al., 2019). Accuracy on
infrequent attention trials and CV on frequent attention trials were
significantly correlated, mean within-subject correlation between
attention metrics: ρ = −.23 ± .15; one-sample t test: μ = 0, t(132)=
−16.4, p < .001, d = 1.42, 95% CI [−0.29, −0.22]; mean within-
subject correlation between detrended attention metrics: ρ =
−.21 ± .15; one-sample t test: μ = 0, t(132) = −15.89, p < .001,
d = 1.38, 95% CI [−0.24, −0.19], and CV was significantly
higher preceding incorrect responses to infrequent attention trials
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Figure 4
Experiment 2: Task Design

Note. (A)Modified feedback for Experiment 2. Attention trials were identical
to those in Experiment 1. (B) Reward schedules. Assignment of reward
schedule to shape was counterbalanced across participants. See the online
article for the color version of this figure.
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(relative to correct responses), Figure 5D; paired-sample t test:
t(132) = −12.26, p < .001, d = −1.06, 95% CI [−0.07, −0.05], in
this sample as well, indicating that both metrics were similarly
capturing performance on the attention task. We again found
evidence of a significant vigilance decrement over time, with
individuals becoming less accurate, Average Within-Subject
Correlation Accuracy × Block Number: ρ = −.13 ± .18 SD; one-
sample t test on Fisher transformed ρ values: μ = 0, t(132) =
−8.27, p < .001, d = −0.72, 95% CI [−0.17, −0.10], and more
variable in their RTs, Average Within-Subject Correlation CV ×
Block Number: ρ = .083 ± .23; one-sample t test on Fisher
transformed ρ values: μ= 0, t(132)= 4.19, p< .001, d= 0.36, 95%
CI [0.05, 0.13], over the course of the task. We performed primary
analyses with detrended attention metrics.
On RL trials, participants showed evidence of learning, selecting

the shape that was associated with more points on 60.9% of trials
(SD = 9.7%), a value significantly greater than chance guessing,
one-sample t test: μ = .5, t(132) = 13.09, p< .001, d= 1.13, 95% CI
[59.5, 62.8]. Further, participants did not show a bias to choose one
shape over the other across the task, paired-sample t test to choose
left versus right shape: t(132) = 1.61, p = .111. Again, the two-

learning rate model was a better fit for participant behavior (AIC =
10,869) than the one-learning rate model (AIC = 11,764), so we
used the better fitting model for our analysis. Figure 5B depicts the
probability of the participant choosing the shape associated with
Schedule A in black and the model fit with the simulated probability
of choosing Bandit A in red.

We examined overall correlations between performance on
the concurrent tasks and assessed the influence of reward feedback
and surprise on attentional vigilance. As in Experiment 1, CV was
negatively correlated with overall RL performance but the correlation
was not statistically reliable (Spearman’s correlation: ρ = −.13, p =
.15). In contrast, sustained attention performance indexed by accuracy
on infrequent trials was correlated with overall RL performance
(Figure 5C; Spearman’s correlation: ρ = .23, p = .0084) and learning
rate (positive learning rate: Spearman’s correlation: ρ = .18, p =
.0396; negative learning rate: Spearman’s correlation: ρ = .25, p =
.0041), replicating the results of Experiment 1 in a larger sample
with a modified task. The correlation between accuracy on
infrequent trials and subject-wise inverse temperature parameters
was also negative, as in Experiment 1; however, it was not
statistically reliable (Spearman’s correlation: ρ = −.15, p = .081).
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Figure 5
Experiment 2: Sustained Attention and RL Performance

Note. (A) Accuracy on frequent and infrequent attention trials. All error bars represent ±1
standard error of the mean. (B) Validation analysis of CV metric of attention. CV on three
frequent trials preceding correct versus incorrect responses to infrequent attention trials. (C)
Probability of selecting the shape associated with purple reward schedule (circle) in Figure 4B.
Participant behavior in black. Simulated probability of choosing the circle from average fitted
parameters. (D) Correlation between performance on attention trials (accuracy on infrequent
trials) and performance on the RL trials (percent of RL trials where the participant chose the
shape with a higher point value). CV = coefficient of variation; RL = reinforcement learning.
See the online article for the color version of this figure.
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This replication demonstrates the robustness of the relationship
between performance on the two tasks.
We compared attention performance after RL trials with positive

point values to attention performance after RL trials with negative
point values to examine the impact of rewards on attention. Partici-
pants exhibited significantly boosted sustained attention after
positive point trials relative to negative point trials in both accuracy,
Figure 6A, t(132) = 2.29, p = .024, d = −0.20, 95% CI [0.002,
0.027], and CV, Figure 6B, t(132) = −5.22, p< .001, d = 0.45, 95%
CI [−0.02, −0.009]. This finding thus replicates the reward analyses
presented in Experiment 1.
In addition, we examined the relationship between RPE

magnitude and attention performance after positive and negative
point value trials. We simulated trial-by-trial RPEs individually
for each participant following the same procedure detailed in
Experiment 1. We grouped trials based on whether the point value
on the previous RL trial had been positive or negative. Then, we did
a median split on RPEs for each group of trials and compared
attention performance after large or small magnitude RPEs for both
negative and positive feedback. We found no significant differences
in attentional state after large versus small RPEs on positive point
trials, Figure 6C, detrended accuracy: t(132) = −1.55, p = .122,

95% CI [−0.02, 0.003]; Figure 6D, detrended CV: t(132) = 0.21,
p= .832, 95%CI [−0.005, 0.006], nor in accuracy on negative point
trials, detrended accuracy: t(132)=−1.56, p= .120, 95%CI [−0.04,
0.004]. After negative points trials, however, participants did exhibit
higher CV (i.e., worse sustained attention) after especially large
negative RPEs relative to small negative RPEs, t(132) = 2.15, p =
.033, d = 0.19, 95% CI [0.0008, 0.02].

For completeness, we compared four linear mixed-effects
models to assess the impact of reward and RPE on the two metrics
of sustained attention. Each model was fit to either infrequent trial
accuracy or CV using (a) point value from previous RL trial,
(b) simulated RPE from previous RL trial, (c) point value valence
(0 for negative, 1 for positive), or (d) RPE valence (0 for negative,
1 for positive) as predictors. Additionally, models included random
intercepts and slopes for each subject. All models were significantly
predictive of attentional state (ts > 2.25, ps < .0245), replicating the
findings of Experiment 1. Model fit was similar across variants of
the model (accuracy ∼ points: AIC = 4,286; accuracy ∼ points
valence: AIC = 4,282; accuracy ∼ RPE: AIC = 42,584; accuracy ∼
RPE valence: AIC = 4,280; CV ∼ points: AIC = −14,492; CV ∼
points valence: AIC = −14,481; CV ∼ RPE: AIC = −14,464; CV ∼
RPE valence: AIC = −14,467), likely due to the high correlation
between points and RPEs across trials (average correlation across
participants = .84, SD = .16).

We again followed these analyses with a post hoc analysis
to characterize the dynamics of this attentional boost within blocks
of attention trials, as in Experiment 1. Replicating the findings
of Experiment 1, we found that the boost in sustained attention
performance was strongest during the earliest phase of the block,
early trials:M= 0.031; one-sample t test: t(132)= 9.04, p< .001, d=
0.78, 95% CI [0.024, 0.038], and quickly diminished, middle phase:
M = 0.003; one-sample t test: t(132) = 0.77, p = .442, 95% CI
[−0.004, 0.01]; late phase: M = 0.006; one-sample t test: t(132) =
1.60, p = .112, 95% CI [−0.001, 0.013]. This analysis provides
further evidence of a quite transient boost in sustained attention
following rewarding feedback.

As in Experiment 1, we assessed whether attentional state was
predictive of learning in our task.We performed a logistic regression
that used the detrended attention metrics to predict whether
participants selected the more valuable shape on a given trial. We
did not find that attentional state was predictive of choice
performance in the task (RL trial accuracy ∼ detrended accuracy:
fixed effect of accuracy on infrequent trials on RL performance: B =
−0.02, z=−0.29, p= .772; RL trial accuracy∼ detrended CV: fixed
effect of CV on RL performance: B = 0.064, z = 0.363, p = .716),
perhaps suggesting that overall relationships between performance
on the two tasks was primarily due to the influence of ongoing RL on
attention, rather than a robust bidirectional relationship.

Experiment 3

The results of Experiments 1 and 2 demonstrate a positive effect
of reward feedback on attentional vigilance. This effect is transient,
only lasting several seconds, and, critically, does not require rewards
to be directly tied to attention task performance. In the following
study, wemodified our approach to assesswhether simply processing
reward feedback itself was sufficient to elicit boosts in sustained
attention, or whether the observed effect was contingent on people
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Figure 6
Experiment 2: Effect of Reward on Sustained Attention

Note. (A) Accuracy (detrended) on infrequent attention trials following
rewarded versus unrewarded reinforcement learning trials. All error bars
reflect ±1 standard error of the mean. (B) RT variability (measured by
detrended coefficient of variation) on frequent attention trials following
rewarded versus unrewarded reinforcement learning trials. (C) Accuracy on
infrequent trials after large and small magnitude RPEs. Unrewarded trials on
left and rewarded trials on right. (D) RT variability (measured by coefficient
of variation) on frequent attention trials after large and small magnitude
RPEs. Unrewarded trials on left and rewarded trials on right. RPE = reward
prediction error; CV = coefficient of variation; RT = reaction time. See the
online article for the color version of this figure.
* p < .05. *** p < .001.
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actively engaging in instrumental learning (i.e., using the reward
feedback to guide future behavior).
To compare these different interpretations, in Experiment 3, we

replaced the instrumental RL task with a “passive” reward task
where participants were cued to simply press a button to reveal
reward feedback. We closely matched the rewards that participants
received with the statistics of rewards received in Experiment 2
(see the Method section) to enable comparison across the two
experiments. We examined attentional performance after positive
and negative reward trials as in Experiment 2. In this way, we can
test whether reward feedback in the absence of instrumental learning
also yields boosts in attentional vigilance.

Method

Participants

We recruited 150 participants from Prolific to participate in this
study. Demographic information was collected through Prolific,
as in Experiment 2. For parity with Experiment 2, we excluded
participants who were less than 75% accurate on frequent attention
trials (N= 7) and participants who did not respond promptly (<1.5 s)
to at least 75% of reward trials (N= 9, four of which also met the first
exclusion criterion). We included the second exclusion criterion
to match the second attention check in Experiment 2, although
participants needed to respond to each reward trial in Experiment 3
before the task could proceed. The deadline was based on the RL
trial durations in Experiments 1 and 2. In addition to these two
performance-based exclusions, three data files were never received
due to participant connectivity issues, leaving us with a final sample
of 135 participants (N = 56 reported female, N = 79 reported male;
Mage = 32.3, SDage = 5.2).

Procedure

The task in Experiment 3 resembled that in Experiment 2:
Participants experienced blocks of 19–27 attention trials followed
by individual reward task trials. However, on the reward task trials,
participants saw a single slot machine cartoon at the center of the
screen and were instructed to press the “J” key with their right hand
to reveal reward feedback. The trial did not end until the participant
made a response. Once they pressed the J key, the points that they
received on that trial were displayed in a green circle if it was a
positive point value or a red circle if it was a negative point value.
Points were displayed for 750 ms before the next block of attention
trials began (Figure 7A). There were 76 of these passive reward
trials. Again, participants used their left hand, positioned on the F
and D keys, to respond to attention trials. We generated 10 trial
sequences of frequent, infrequent, and RL trials prior to launching
the experiment online as in Experiment 2. One of these pregenerated
trial sequences was then randomly selected for each participant. The
task took approximately 30 min to complete.
All participants received the same reward sequence in Experiment

3 (Figure 7B). We used the rewards that participants received in
Experiment 2 to construct the reward sequences that participants
experienced in Experiment 3. To do this, we first selected the point
value that most participants in Experiment 2 received on each trial to
create a sequence of 76 rewards. Then, we took the average of each
participants’ reward sequence and subtracted that value from each

point value in the originally constructed reward sequence. This step
is necessary since participants in Experiment 2 tended to choose the
higher value shape as they learned, and we wanted to ensure that
Experiment 3 participants were experiencing both positive and
negative point trials. Finally, we rounded this sequence to the
nearest integer for ease of presentation during the task. This process
yielded a reward schedule with a range of −33 to 26 points, a mean
of 2.46 points, and a cumulative value of 187 points which is
comparable to the points received by participants in Experiment 2
(range = −35 to 29, M = 2.75, cumulative value = 205 points).

Analysis

Our primary analyses mirrored the approach in Experiment 2.
Specifically, we compared detrended attention performance (accuracy
on infrequent trials and CV on frequent trials) after negative point
trials and positive point trials. We used a mixed-factor analysis of
variance to test for differences between performance on Experiments 2
and 3. Here, we report effect size using partial eta squared (η2).

We excluded trials where participants did not respond, yielding
1,528 frequent and 169 infrequent trials per participant on average.
All reward trials were included as participants needed to respond
before the task progressed on these trials.

Transparency and Openness

This study was not preregistered.We include details about sample
size and participant exclusions, as well as methodological details to
facilitate future replication. Data and analysis code are available at
https://github.com/jetrach/SARL_2024.

Results

We again replicated attention task behavior in Experiment 3:
Participants were significantly more accurate on frequent versus
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Figure 7
Experiment 3: Task Design

Note. (A) Modified reinforcement learning trials and feedback for
Experiment 3. Slot machine image from https://www.Flaticon.com. (B)
Reward schedule. See the online article for the color version of this figure.
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infrequent attention trials, Figure 8A; paired-sample t test: t(134) =
22.46, p < .001, d = 1.93, 95% CI [0.30, 0.36], the two metrics of
sustained attention were significantly correlated, mean within-subject
correlation between attention metrics: ρ = −.26 ± .15, one-sample
t test: μ = 0, t(134) = −18.59, p < .001, d = −1.60, 95% CI [−0.30,
−0.25]; mean within-subject correlation between detrended attention
metrics: ρ = −.23 ± .14, one-sample t test: μ = 0, t(134) = −18.09,
p < .001, d = −1.56, 95% CI [−0.27, −0.22], and CV was
significantly higher (i.e., more variable) preceding incorrect responses,
versus correct, on infrequent attention trials, paired-sample t test:
t(134) = −13.38, p < .001, d = −1.15, 95% CI [−0.07, −0.05].
Performance on the attention task was similar across Experiments

2 and 3: There were no overall differences in accuracy between the
two tasks, Experiment 2: M = 93.1%, Experiment 3: M = 94.4%;
Welch two-sample t test: t(261.8) = 1.23, p = .220, 95% CI [−0.02,
0.004], nor specifically accuracy on infrequent attention trials,
Experiment 2: M = 66.8%, Experiment 3: M = 64.7%; Welch two-
sample t test: t(261.2) = 1.03, p = .305, 95% CI [−0.02, 0.06].
However, participants did tend to be slightly faster to respond on
average in Experiment 3 as compared to Experiment 2, Experiment
2:M= 345ms, Experiment 3:M= 321ms;Welch two-sample t test:
t(265.8) = 3.69, p < .001, d = 0.45, 95% CI [11.29, 37.18]. This
could have arisen since there was no extra load of a learning task in
Experiment 3. Importantly, CV was not different across the two
experiments, Experiment 2: M = 0.31, Experiment 3: M = 0.31;
Welch two-sample t test: t(255.8) = 0.29, p = .772, 95% CI
[−0.03, 0.02].
Comparison of attention performance after positive versus

negative point trials suggests a significant, but less robust, boost
in attentional vigilance after reward trials relative to Experiment 2.
There were no differences in accuracy after positive versus negative
point trials, detrended accuracy: t(134) = 0.70, p = .485, 95% CI
[−0.007, 0.02]; Figure 8A, although individuals were numerically
more accurate after positive point trials as compared to negative
point trials (positive point trials: M = 0.0024; negative point trials:
M = −0.0015). Participants were, however, significantly less
variable in their response times after positive point versus negative
point trials, detrended CV: t(134)= 3.64, p< .001, d= 0.31, 95%CI

[−0.01, −0.004]; Figure 8B, providing some evidence of a reward-
related boost in attention performance, at least in our RT-related
measures of vigilance. Finally, we conducted the same post hoc
analysis as in Experiments 1 and 2 to examine the within-block
dynamics of this facilitatory effect, dividing each block of attention
trials into three phases. As in Experiments 1 and 2, this analysis
revealed a transient boost in sustained attention after rewarded trials,
early phase: M = 0.011; one-sample t test: t(134) = 3.39, p < .001,
d = 0.29, 95% CI [0.005, 0.02], which quickly diminished, middle
phase: M = 0.0006; one-sample t test: t(134) = 0.18, p = .858,
95% CI [−0.006, 0.007]; late trials: M = −0.004; one-sample t test:
t(134) = −1.01, p = .315, 95% CI [−0.011, 0.004].

We conducted a 2 × 2 analysis of variance with one between-
subject factor (experiment) and one within-subject factor (reward
valence) to assess if the reward facilitation effect (on CV) in
Experiment 3 was similar to that seen in than in Experiment 2. CVdid
not differ across the two experiments, experiment: F(1, 266) = 2.48,
p = .116, and CV was significantly modulated by reward valence,
reward valence:F(1, 266)= 40.04, p< .001, η2p = 0.13. Crucially, we
found that there was no interaction between experiment and reward
valence, Experiment × Reward Valence: F(1, 266) = 2.34, p =
.127. Thus, we can infer that the influence of reward valence was
comparable between the two studies, at least in its effect on CV.

Discussion

In this study, we sought to investigate short-timescale interactions
between rewards and attentional vigilance when the rewards were
not directly contingent on vigilance performance. Overall, we
found evidence that reward transiently facilitated attentional
vigilance, extending previous results (Esterman et al., 2014, 2016,
2017; Massar et al., 2016; Robison et al., 2021) to a timescale of
seconds. We did not find consistent evidence that surprise reliably
modulated attention performance. Crucially, the observed facilita-
tory effects of reward were robust even though reward was never
contingent on attentional performance and did not directly increase
the value of attentional performance for the participant. This was
most dramatically seen in Experiment 3, where reward facilitation
effects persisted even when rewards were received passively,
requiring no learning or active choice by the participant. Taken
together, our results thus point to an automatic link between reward
and sustained attention.

The finding that noncontingent rewards boost sustained attention
both builds on and adds specificity to previous work suggesting that
performance-based incentives improve sustained attention (Esterman
et al., 2014, 2016, 2017; Massar et al., 2016; Robison et al., 2021).
Generally, the fact that rewards can reduce lapses in sustained
attention is thought to provide evidence against pure “resource”
theories of sustained attention (i.e., that lapses in sustained attention
are caused by the depletion of limited attentional resources; Helton &
Russell, 2011, 2013; Muraven & Baumeister, 2000; Thomson et al.,
2015; Warm et al., 2008). Instead, it is more aligned both with
“underload” models (i.e., that a lack of motivation leads to lapses in
sustained attention; Manly et al., 1999; for a review of models of
sustained attention, see Esterman & Rothlein, 2019) and opportunity
cost models of sustained attention (i.e., where lapses occur when the
cost of maintaining a consistent attentional state overshadows the
expected value of the task; Kool et al., 2017; Kurzban et al., 2013;
Thomson et al., 2015).
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Figure 8
Experiment 3: Sustained Attention Performance

Note. (A) Accuracy on frequent versus infrequent attention trials. (B)
Validation analysis of CV metric of attention. CV on three frequent trials
preceding correct versus incorrect responses to infrequent attention trials. CV=
coefficient of variation. See the online article for the color version of this figure.
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Our results are unique relative to the extant literature for two
reasons: First, the RL task reward feedback was not contingent on
performance in the attention task, indicating that this facilitatory
effect can emerge even when rewards do not directly increase the
value of attentional performance. Second, our reward stimuli were
only symbolic (i.e., we did not give any additional monetary reward
based on performance in either task), suggesting that even subtle
reward signals or abstract goals can affect attention. Thus, our
results suggest that reward feedback need not increase the value of
sustained attention to induce performance improvements.
We note that our results stand in contrast to a previous study that

suggested that rewards must be performance-contingent to trigger
improvements in sustained attention (Massar et al., 2016). Massar et
al. (2016) specifically compared performance during a sustained
attention task, where participants received no rewards (baseline),
performance-based rewards, or random (i.e., not connected to task
performance) rewards during different blocks of trials. They found
that while sustained attention was improved in the performance-
based reward block relative to baseline, there was a decrease in
performance during the random reward block relative to baseline.
These results, however, are difficult to directly compare to the present
study, as Massar and colleagues were looking at average sustained
attention measures over a block of performance-contingent reward
trials versus a block of random reward trials, rather than comparing
sustained attention performance after rewarded versus unrewarded
trials within each condition. It is possible that individual rewards
were boosting performance in both cases, however such transient
boosts in sustained attention following random rewards would be
obscured by this block-level analysis.
The fact that we still observed reward-related facilitation in

Experiment 3 where rewards were only received passively (albeit
only for the RT-related attention metrics) argues against the idea that
the effects seen in Experiments 1 and 2 could be explained by an
indirect contingency, where earning reward in the RL tasks boosts
attention so that participants can make better choices and thus
earn more reward in the long run. Further evidence against this
interpretation comes from our analyses looking at the effects of
attentional state on RL performance—we found no reliable evidence
that people made better choices (operationalized as choosing the
bandit with a higher reward probability) when they were in high
versus low vigilance states. Finally, our finding across all three
experiments that reward facilitation was most reliable in the earliest
phases of the subsequent attention blocks, which suggests a rather
transient effect on the order of several seconds, also argues against
the idea that people optimized their attentional state to prepare for
later RL trials. If that were the case, we may have expected to see the
opposite timecourse effect (i.e., an increase, or “ramping,” of the
reward facilitation effect over time).
An alternative interpretation of our results is that the interspersed

RL trials in our task may act as consistent feedback that promotes
general task engagement. Previous work has shown that increasing
task engagement (i.e., reducing the monotony of the sustained
attention task) can reduce time-on-task vigilance effects (Pop
et al., 2012; Robison et al., 2021). In regard to feedback and task
engagement, recent work suggests that providing intermittent
performance feedback to participants can also support sustained
attention (Robison et al., 2021). Robison et al. (2021) examined
the effect of goal-setting and performance-based feedback on
sustained attention. Participants were assigned to one of four

conditions where they were given a performance goal (or not)
and/or where they received feedback (or not). Interestingly, they
found that participants who both had a goal and received feedback
had better sustained attention performance and reported higher
levels of motivation and less mind-wandering during task execution,
relative to participants who received only one of the manipulations
or neither. While this result does provide evidence that feedback can
boost task engagement and sustained attention, it differs from our
results in important ways. First, feedback in previous experiments
was directly related to attentional performance, in contrast to our
design. Second, our effects are tied to a specific feature of
feedback—rewarded versus unrewarded—rather than a generalized
effect of any feedback.

We speculate that our results reflect a low-level mechanismwhere
reward responses in the brain automatically and transiently boost
attention. Rewards might boost sustained attention via projections
from subcortical dopaminergic structures to prefrontal and parietal
circuits implicated in attentional vigilance (Chudasama & Robbins,
2004; Esterman et al., 2013; Granon et al., 2000; Nieoullon, 2002;
Totah et al., 2013; Westbrook & Braver, 2016). Behaviorally, this
hypothesis would be strengthened by evidence that RPEs
parametrically modulated attentional state in our task, a relationship
we found to be unreliable. It is possible that our design was not
sensitive enough to uncover this relationship in behavior (indeed, we
saw some subtle signs of this effect). Further, we used computational
models to simulate the latent RPEs that participants might be
experiencing on a trial-by-trial basis, but other techniques (e.g.,
neuroimaging) could provide a more direct measure of RPE strength,
which is itself a direct correlate of dopamine release. Noradrenergic
activity in the locus coeruleus is also a potential mediator of a
relationship between reward and attention (Aston-Jones & Cohen,
2005; Sara, 2009; Zhang et al., 2023). The locus coeruleus has long
been implicated in regulating vigilance and arousal (Aston-Jones &
Bloom, 1981; Aston-Jones et al., 1991), and it is also interconnected
with the dopaminergic circuitry involved in reward processing during
reinforcement learning (Sara, 2009). Thus, this network is well
positioned to coordinate reward inputs and attentional processes.
Future work is necessary to clarify how different types of reward and
feedback differentially impact attentional state and the associated
brain networks (e.g., deBettencourt et al., 2015).

We included Experiment 3 to examine whether benefits to
attentional state observed in Experiments 1 and 2were contingent on
instrumental RL, or whether they represented a more generalized
effect of reward on sustained attention. We found that participants
still showed improved attention after positive rewards, although
they were not experiencing the reward feedback in the context of
an instrumental learning task. While this boost in attention from
reward was evident and comparable in magnitude to the effect in
Experiment 2, we did not find significant modulation of our other
metric of sustained attention, accuracy on infrequent attention trials
(Figure 9). One possible explanation for this difference could be that
participants were not paying as close attention to the reward trials in
Experiment 3 since they did not need to use the reward feedback to
guide any decisions. We believe this to be an unlikely explanation,
as reward feedback was displayed for the same amount of time
as in Experiment 2, the subsequent block of attention trials
began immediately after the presentation of reward feedback, and
attention performance was comparable between the two experi-
ments. Alternatively, the fact that there was no choice behavior on
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RL trials (i.e., Experiment 3 was not a dual task) might have
allowed participants to deploy more cognitive resources to protect
against errors during the attention blocks, despite being unable to
control subtler variations in CV.
Our task design allowed us to examine the relationship between

reward, surprise, and fluctuations in sustained attention within-
subject and on a finer timescale than previous behavioral work. We
show that individual trials can influence subsequent sustained
attention on the scale of tens of seconds within the flow of the task,
rather than aggregating across much longer periods of time (i.e.,
the length of an experimental session). In post hoc analyses, we
attempted to get even finer temporal resolution by dividing attention
blocks (∼13–20 s in duration) into distinct phases to understand the
dynamics of attentional facilitation after rewards. In Experiment 1,
this post hoc analysis revealed significant reward effects in the
middle of the block of attention trials but not in the last third. In
Experiments 2 and 3, the reward effect was most reliable in the phase
immediately following the reward feedback but not in the second
and third phases. Thus, the facilitating effect of reward on attention
appeared to be rather transient, which in our view further points to an
automatic link between reward and attention in our task, rather than
a deliberative accounting of the value of sustaining attention.
One consideration in interpreting our findings is that we are

describing boosts in sustained attention performance after rewards,
relative to performance after unrewarded trials, as we did not collect a
baseline attention period to compare to. It is thus ambiguous whether
we are seeing an inhibitory effect of punishment on attention rather
than a facilitatory effect of reward on attention. This issue is
somewhat semantic in our view—all feedback, or even a lack of
feedback, can be said to have some kind of valence when compared
to explicitly valanced feedback received at neighboring time points.
For example, while the feedback in Experiment 1 is not explicitly
negative (+0, rather than negative point values in Experiments 2
and 3), such feedback will still elicit a negative prediction error in
the participant’s brain if they are expecting to receive rewarding

feedback. Vigilance decrements over the course of the task present
a problem for collecting a baseline measurement of participants’
attentional performance: collecting a baseline attention measurement
at the beginning of the session when participants are not fatigued
would overestimate attentional performance, whereas a baseline
period at the end of the session when participants are fatigued would
underestimate attentional performance. Thus, we cannot say
definitively if rewards boost sustained attention relative to some
baseline or if nonrewards and negative feedback impair attention
performance, or if both processes occur simultaneously. Future
work could engage with this question; however, the results
presented here should be interpreted as a relative difference in
performance, rather than a unidirectional effect.

We curiously did not detect robust effects of attentional state
on RL performance. This result is somewhat surprising given the
context of previous work on RL and selective attention demon-
strating that selective attention significantly impacts both choice and
updating processes in a similar RL task (Leong et al., 2017; Niv et al.,
2015). In contrast to research on selective attention and RL, recent
work has indicated that attentional lapses are beneficial for learning in
certain circumstances (A. Decker, Dubois, et al., 2023). It is possible
that the more rapid attentional dynamics of our integrated task, or the
context changes that occurred between sustained attention and RL
trials, attenuated the potential effects of sustained attention on RL.
Alternatively, the RL system may be robust to minor fluctuations in
sustained attention—particularly in a relatively simple choice task
such as our own. Sustained attention may, for example, be required
when adaptive choice requires maintenance of a more complex
model of the task (Otto et al., 2015), when reward feedback is
more abstract or requires working memory (McDougle et al., 2022),
or when the space of possible features to attend to is larger (Wise
et al., 2024).

Finally, on a methodological note, we think our results also
speak to interpretability issues with RL model parameters. Recent
work has suggested that some RL model parameters can be hard
to interpret and are affected by task context (Eckstein et al.,
2022; Vrizzi et al., 2023). Our results may speak to difficulties in
interpreting specifically the learning rate parameter of RL models—
we found robust between-subject correlations between sustained
attention and RL learning rates in our experiments. Although we did
not see a reliable trial-by-trial influence of sustained attention on RL
choices, our findings still suggest that learning rates cannot easily be
assumed to only represent precise neurocognitive variables (e.g.,
corticostriatal plasticity) because they may be shaped by other
psychological factors like attentional state or mood (Jangraw et al.,
2023). These state variables will be important to measure or model
to improve the interpretability of model parameters, especially in
applications such as computational psychiatry.

Constraints on Generality

Our results should, in theory, be generalizable to the broader
population.While the initial sample from Experiment 1 was recruited
from the Yale University undergraduate population, which could
limit generalizability, we followed up with two large online samples
that were more diverse. Still, all our samples are limited to primarily
young adults, so it is unclear how these interactions between
sustained attention and reward might evolve with typical aging. In
addition, we opted to employ variations on the same basic task in
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Figure 9
Experiment 3: Effect of Reward on Sustained Attention

Note. (A) Accuracy (detrended) on infrequent attention trials following
rewarded versus unrewarded reinforcement learning trials. All error bars
reflect ±1 standard error of the mean. (B) RT variability (measured by the
detrended coefficient of variation) on frequent attention trials after rewarded
versus unrewarded reinforcement learning trials. CV = coefficient of
variation; neg = negative; pos = positive; RT = reaction time. See the online
article for the color version of this figure.
*** p < .001.
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order to facilitate comparison across experiments. Future work
could implement a wider variety of tasks to fully characterize
interactions between reward and vigilance.

Conclusion

Our findings demonstrate a tight link between reward feedback
and attentional dynamics, even when rewards are not contingent on
behavior. Future work could explore the nature of this interaction
further; for example, can our effect be explained by a kind of
automatic cognitive accounting, where reward inputs globally signal
that general environmental conditions are improving and that the
cost of greater attentional vigilance might be worth possible ensuing
rewards?Might our effects also be interpreted at a lower level, where
reward feedback is correlated with phasic dopamine, which is then
automatically broadcast to frontoparietal regions where it may act as
a “gain” signal for attentional vigilance? How changes in automatic
effort accounting and/or phasic dopamine induce short-timescale
modulations of sustained attention, and the neural and computa-
tional systems supporting this process, remain open questions that
are relevant across domains of human performance.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 19(6), 716–723. https://doi.org/10
.1109/TAC.1974.1100705

Anderson, B. A., Kuwabara, H., Wong, D. F., Gean, E. G., Rahmim, A.,
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