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Abstract
What we remember reflects both what we encounter, such as the intrinsic memorability of a stimulus, and our internal atten-
tional state when we encounter that stimulus. Our memories are better for memorable images and images encountered in an 
engaged attentional state. Here, in an effort to modulate long-term memory performance, we manipulated these factors in 
combination by selecting the memorability of presented images contingent on individuals’ natural fluctuations in sustained 
attention. Can image memorability and attentional state be strategically combined to improve memory? Are memorable 
images still well remembered during lapses in sustained attention, and conversely, can attentive states rescue memory per-
formance for forgettable images? We designed a procedure to monitor participants’ sustained attention dynamics on the fly 
via their response time fluctuations during a continuous performance task with trial-unique scene images. When high- or 
low-attentional states were detected, our algorithm triggered the presentation of high- or low-memorability images. After-
wards, participants completed a surprise recognition memory test for the attention-triggered images. Results demonstrated 
that memory performance for memorable items is not only resistant to lapses in sustained attention but also that memory 
cannot be further improved by encoding memorable items in engaged attentional states. On the other hand, memory perfor-
mance for low-memorability images can be rescued by attentive encoding states. In sum, we show that both memorability 
and sustained attention can be leveraged in real time to maximize memory performance. This approach suggests that adaptive 
cognitive interfaces can tailor what information appears when to best support overall memory.
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As we proceed through everyday life, we encounter a 
diverse range of visual information in a variety of atten-
tional states, but only some fraction of that information is 
later remembered. Recent research has revealed that both 
what specific image we view and when we see it (namely, 
how attentive we are when we see it) predict the mnemonic 
fate of a stimulus. For example, an inherently memorable 
image is much more likely to be remembered (Bainbridge 

et al., 2013; Isola et al., 2011). An image encountered in an 
attentive state is also much more likely to be remembered 
(Chun & Turk-Browne, 2007; deBettencourt et al., 2018; 
Wakeland-Hart et al., 2022). These findings suggest that 
both stimulus memorability and an individual’s attention 
can be leveraged to improve memory.

The intrinsic memorability of an image refers to the 
likelihood that one will correctly remember having seen 
it previously (Bainbridge et al., 2013; Isola et al., 2011). 
Memorability is highly reliable across participants, even 
when controlling for visual features (e.g., spatial frequency, 
color; Bainbridge, 2020; Isola et al., 2014) or stimulus cate-
gory (Kramer et al., 2023). New work has found that abstract 
visualizations (Borkin et al., 2013; Roberts et al., 2023), 
words (Tuckute et al., 2018), drawings (Han et al., 2023), 
paintings (Davis & Bainbridge, 2023), and even dance 
moves (Ongchoco et al., 2023) are reliably remembered or 
forgotten across individuals. The intrinsic memorability of 
an image even predicts later recognition over longer time 
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scales (e.g., when tested after a 1-week retention interval; 
Goetschalckx et al., 2018), predicts memory in naturalistic 
museum settings (Davis & Bainbridge, 2023), and captures 
memory performance in children as young as 4 years old 
(Guo & Bainbridge, 2023). Intrinsic memorability, there-
fore, is widely considered to be a feature that is inherent to 
a stimulus, and that is predictive of memory across a range 
of contexts and populations. However, it remains an open 
question whether and how memorability might be influenced 
by one’s internal state.

Our internal states—such as how attentive we are to a 
task at hand—vary considerably over time. Attention fluc-
tuations can be measured with subjective approaches, such 
as intermittent thought probes (e.g., Smallwood et al., 2008) 
and continuous self-report ratings (e.g., Song et al., 2021), or 
with objective approaches, such as response times (RTs; e.g., 
Corriveau, Chao et al., 2024a, Corriveau, James et al., 2024b; 
deBettencourt et al., 2018), pupillary responses (e.g., Keene 
et al., 2022), and neural measures (e.g., deBettencourt et al., 
2021; Jones et al., 2024). Specifically, prior work using con-
tinuous performance tasks have shown that sustained attention 
during a task correlates with RTs, such that slower RTs reflect 
higher attention (Cheyne et al., 2006, 2009; deBettencourt 
et al., 2018, 2019; Manly et al., 1999; Robertson et al., 1997; 
Zhang & Rosenberg, 2023). These attentional states influence 
memory performance, regardless of which stimulus appears. 
For example, memory performance is better when attention is 
more engaged during both memory encoding (Chun & Turk-
Browne, 2007; deBettencourt et al., 2018, 2021; Wakeland-
Hart et al., 2022) and memory retrieval (Madore et al., 2020; 
Madore & Wagner, 2022).

Although memorability is specific to a stimulus (e.g., an 
image), attentional states are comparatively idiosyncratic. 
That is, the memorability of a given image represents an 
aggregate factor that can be measured ahead of time through 
prior studies (e.g., Isola et al., 2011) or estimated via artifi-
cial neural networks (e.g., ResMem; Needell & Bainbridge, 
2022), whereas sustained attention differs both between 
people and within a person over time. Prior research has 
shown that when memorability and sustained attention 
are manipulated separately, they both predict unique sets 
of variance in later memory performance (Wakeland-Hart 
et al., 2022). This opens up the possibility of leveraging both 
factors simultaneously to maximize memory performance. 
Therefore, the challenge lies in creating a cognitive inter-
face that can make use of both the stable, population-level 
measure of an image’s memorability, while at the same time 
considering an individual’s moment-to-moment changes in 
sustained attention. Recent studies have demonstrated how 
RTs can be used as an objective, real-time index of sustained 
attention to adaptively modify experiment parameters on 
the fly. In deBettencourt et al. (2018), participants classi-
fied scene images, the category of which—unbeknownst to 

them—varied depending on their real-time sustained atten-
tion. This study revealed that using RTs to index sustained 
attention was a viable way to predict subsequent memory on 
an image-by-image basis. More importantly, this work also 
demonstrated the feasibility of creating cognitive interfaces 
that dynamically adapt to the user’s behavior on each trial.

In the current study, we aimed to create an adaptive cog-
nitive interface that could track an individual’s sustained 
attention, then leverage that information to dynamically 
present memorable or forgettable images, all in real time. 
By strategically inserting memorable or forgettable images 
when sustained attention is waxing and waning, one can not 
only maximize memory performance in ideal conditions, 
but can perhaps also ‘rescue’ memory for low-memorability 
images by inserting them when attention is high. Here, we 
explored whether real-time performance tracking could be 
used to create adaptive cognitive interfaces whereby images 
with known memorability characteristics are strategically 
presented to influence later memory performance. In other 
words, we asked: Can we modulate participants’ recognition 
memory performance by presenting memorable or forget-
table images depending on their attentional state?

Methods

The procedures and materials for this study were approved 
by the Institutional Review Board (IRB) at the University 
of Chicago. All data, analysis code, experiment programs, 
and other materials are made available on the Open Science 
Framework (OSF; https://​osf.​io/​9vc5a/).

Participants

The number of participants per condition was determined 
a priori using G*Power (Version 3.1.9.6; Faul et al., 2007) 
with a power analysis based on the reported effect of atten-
tional state on subsequent memory performance from 
prior work (Experiment 3 in Wakeland-Hart et al., 2022). 
The parameters were as follows: one-group linear bivari-
ate regression, two-tailed test, estimated slope = .18, σx = 
1, σy = .34, α = .05, power = .8, indicating a minimum 
sample size of 23 participants in each group. Because two 
groups were to be collected (‘congruent’, e.g., pairing high-
attention states with high-memorability images, and con-
versely, ‘incongruent’, e.g., pairing high-attention states 
with low-memorability images), the minimum sample size 
was doubled to 46, while a target sample size was set at 64 
to increase our chances of finding true effects if they exist.

In the end, a total of 68 participants ages 18–35 years 
were recruited using the University of Chicago SONA 
undergraduate recruitment system and completed the 
study in the laboratory. Participants were assigned to one 

https://osf.io/9vc5a/
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of two experimental conditions (Congruent or Incongru-
ent) in alternating order. All participants were compensated 
for their time with either half a course credit or $5 USD, 
provided written informed consent, and had self-declared 
normal or corrected-to-normal color vision, no prior major 
head injuries, and no diagnosis of psychiatric or neurological 
disorders. Data from four participants were excluded while 
data collection was ongoing: two participants switched the 
response mapping on the continuous performance task, one 
participant had continuous performance task data that were 
>3 standard deviations (SDs) below the group average up 
to that point, and one participant had memory task perfor-
mance that was >3 SDs below the group average up to that 
point. The four excluded participants were replaced to ensure 
condition groups of an equal size. The final sample size used 
for analyses was 64, split evenly between two groups (Con-
gruent and Incongruent). Both groups had similarly aged 
participants (Congruent: Mage = 20.80 years, SDage = 3.86; 
Incongruent: Mage = 19.70 years, SDage = 1.36), with similar 
sex ratios (Congruent: 17 women, 15 men; Incongruent: 20 
women, 12 men).

Apparatus

The entire experiment was displayed on a 15-in. MacBook 
Pro laptop screen with a resolution of 1,920 × 1,080 px run-
ning at 60-Hz refresh rate, while the experiment was pre-
sented using MATLAB (Version 2022b, The MathWorks, 
Natick, MA, USA) and Psychtoolbox (Version 3.0.18; 
Kleiner et  al., 2007). Participants were seated approxi-
mately 61 cm from the screen. Image stimuli subtended 

approximately 7.25° of visual angle on the screen with a 
black fixation dot subtending approximately 0.6°, centrally 
presented and overlaid on top of stimulus images during the 
continuous performance task (but absent during the memory 
test).

Procedure

During the experiment, participants completed two tasks: 
first, a continuous performance task with trial-unique 
images, and then a recognition memory task to assess which 
images were later remembered (Fig. 1). The continuous per-
formance task utilized a real-time triggering protocol which 
allowed us to tailor which images were presented to partici-
pants when, by tracking their attentional state in the moment 
and leveraging memorability scores collected previously.

Continuous performance task

The continuous performance task was designed to elicit and 
allow for the measure of sustained attentional fluctuations 
by presenting a stream of scene images. On each trial, a 
single, trial-unique image was centrally presented on a gray 
background overlayed with a black fixation dot for 1,000 ms. 
Participants categorized each image as indoor or outdoor by 
pressing the ‘J’ or ‘H’ keys on a keyboard (counterbalanced 
across participants). The fixation dot turned white after a 
response was recorded. Trials progressed regardless of 
whether a response was made, and there was no interstimu-
lus interval. The proportion of indoor/outdoor images were 
imbalanced to better elicit natural fluctuations in sustained 

Fig. 1   Experiment procedure for participants in the congruent condi-
tion. When high attention was detected in this condition, a high-mem-
orability image was triggered. Conversely, when low attention was 
detected in this condition, a low-memorability item was triggered. 
The opposite occurred in the incongruent condition. During the rec-
ognition memory test, all of the old, infrequent-category images were 

presented (both high and low memorability, indicated here by blue 
and red borders, respectively), as well as an equal number of new 
images from the same scene category (medium memorability, indi-
cated here by a yellow border). Images without borders here indicate 
trials in which the memorability was unconstrained. During the actual 
experiment tasks, images did not have borders. (Color figure online)
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attention. At least 90% of the images belonged to one 
‘frequent’ category (either indoor or outdoor, counterbal-
anced across participants; M = 463 trials, SD = 4.37). The 
remaining images (M = 7.08% of trials, SD = 0.97%; but 
hard-capped at 10% of trials) belonged to the other stimulus 
category (i.e., the ‘infrequent’ category, either outdoor or 
indoor). Before starting the main continuous performance 
task, participants practiced 10 trials repeatedly until they 
reached 90% accuracy using different images that were not 
repeated in the main task. During the real continuous perfor-
mance task, RTs for the first 50 trials were not used to trigger 
any infrequent-category images, so as to gain an accurate 
representation of baseline RTs before attention thresholding 
could be applied. Randomly interspersed within these 50 
baselining trials were five infrequent-category images. There 
was no mention of a later memory test or of any instruction 
to remember the images for later. The continuous perfor-
mance task went on without any breaks until all 500 trials 
were completed, for a total duration of 8 min and 20 s.

Image stimuli

This experiment used a set of 1,100 scene images from the 
Scene UNderstanding database (SUN; Xiao et al., 2010). 
These images depict a wide variety of representative real-
world scenes from 281 subcategories, with 550 indoor scenes 
and 550 outdoor scenes, and were the same images used in 
prior related work (deBettencourt et al., 2018). We removed 
three images from the set (one indoor and two outdoor 
images) due to the presence of salient features, such as promi-
nent faces or text. All images were cropped to be square, 
resized to 450 × 450 px and were presented in full color.

Image memorability

The intrinsic memorability of each image was determined in 
prior work (Wakeland-Hart et al., 2022). In that study, 706 
online participants completed a continuous recognition test 
in which a stream of images appeared and their task was to 
detect repeated items (see Bainbridge, 2019). A response 
was considered a ‘hit’ when a subject correctly identified an 
image as a repeat, or a ‘false alarm’ when they incorrectly 
indicated that a novel image was a repeat. The memorability 
of each image was operationalized as the average corrected 
recognition (CR) rate by subtracting the mean false alarm 
rate from the mean hit rate across participants.

We began by sorting all images based on their CR rate as 
reported by Wakeland-Hart et al. (2022) and then selecting 
the 50 highest memorability and 50 lowest memorability 
images from each category, indoor and outdoor. To reduce 
any disproportionate representation of specific image sub-
categories (e.g., office, bar), we retained only one image 
per subcategory in each of the high- and low-memorability 

sets. For example, the high-memorability indoor set could 
only contain one image of an office. If, upon first pass, 
the high-memorability indoor set contained more than one 
image per subcategory (e.g., two images of offices), we 
retained the image with the most extreme memorability 
score. We replaced the other image(s) with the next most 
or least memorable item from a novel subcategory. As a 
result, high- and low-memorability image sets could have 
some overlap in subcategories, but no specific subcategory 
was overrepresented in either set. In the end, high-mem-
orability images ranged in CR score from 0.75 to 0.95, 
whereas low-memorability images ranged in CR score from 
0.26 to 0.56. Note that in all cases, triggered images with 
extreme memorability always belonged to the infrequent 
category, whereas images in the frequent category could be 
of any memorability (mean CR = 0.65, SD = 0.12).

We also selected an equal number of indoor and outdoor 
images of middle memorability (100 images total per scene 
category, 0.56 < CR < .75) to serve as new items during the 
surprise recognition memory test. These middle-memora-
bility images were pseudorandomly selected using a similar 
procedure as described above, such that all subcategories 
were roughly equally well-represented. Middle memorabil-
ity images (rather than high- or low-memorability images) 
were chosen to serve as new items as they provided the best 
case of a baseline level of memorability to compare against; 
we expect high-memorability images will be better remem-
bered than the middle-memorability new items, while low-
memorability images will be worse remembered than them. 
Additionally, using high- and low-memorability images as 
new items on the recognition test could have inadvertently 
caused responses biases, leading to lower false-alarm rates 
for memorable new images and higher false-alarm rates for 
forgettable new images (Broers & Busch, 2021). Moreover, 
participants had slight variations in the number of high- and 
low-memorability ‘old’ items on the recognition test due to 
individual differences in attention triggering at encoding. 
As a consequence, using high- and low-memorability ‘new’ 
items to match would not have been straightforward as they 
would either need to also vary in quantity to match their 
respective ‘old’ counterparts, or would need to be equiva-
lent in quantity to one another while introducing different 
denominators for hit and false-alarm rates.

To ensure low-level features did not significantly differ 
between high- and low-memorability images, we used the 
Natural Image Statistical Toolbox (Bainbridge & Oliva, 
2015). We did not observe any reliable differences in color 
or spatial frequencies (p values ≥ .5) between high- and 
low-memorability images. Images and their corresponding 
memorability scores are available at https://​osf.​io/​6uc48/ 
(Wakeland-Hart et al., 2022), while a list of the specific 
images used in this experiment can be found at (https://​osf.​
io/​9vc5a/).

https://osf.io/6uc48/
https://osf.io/9vc5a/
https://osf.io/9vc5a/
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Real‑time triggering based on attentional state

The goal of the real-time triggering procedure used in this 
experiment was to provide an adaptive encoding environ-
ment for each participant that integrated their natural fluc-
tuations in attentional state with the intrinsic memorability 
of the images they were observing. The continuous perfor-
mance task provided RTs that were used to track each par-
ticipant’s attentional state fluctuations in real time. For a trial 
i, we first calculated and subtracted the linear trend in RTs 
(Trials 1 to i) to remove general effects of fatigue or practice. 
Then, we calculated a real-time measure of attentional state, 
xi, based on the trailing window average over the detrended 
RTs from the three most recent trials (Trials i-2, i-1, i). We 
defined a predetermined threshold, ± 1 standard devia-
tion (σi) from the mean (μi), both of which were calculated 
over detrended trials 1 to i. When the attentional state (xi) 
exceeded our threshold (σi), an image from the infrequent 
category was triggered (i.e., either an indoor or outdoor 
scene) for Trial i+1 (see Fig. 2). Thus, images triggered by 
especially slow RTs (xi > σi + μi) were encoded during high-
attention states, whereas images triggered by especially fast 
RTs (xi < σi – μi) were encoded during low-attention states. 
We also required that the three preceding trials (i-2, i-1, i) 
were correct frequent-category responses and that i > 50 to 
ensure no confounds due to lack of practice.

While our current experiment used detrended RTs as a 
measure of attention based on prior work (Cheyne et al., 2006, 
2009; deBettencourt et al., 2018, 2019; Wakeland-Hart et al., 

2022; Zhang & Rosenberg, 2023), it is worthwhile noting that 
other work has used RT variability as an alternative way to 
index attention (Bastian & Sackur, 2013; Chidharom et al., 
2024; Chidharom & Carlisle, 2024; Esterman et al., 2013; 
Karamacoska et al., 2018; Rosenberg et al., 2013). Recent 
data demonstrate that RT and RT variability both indepen-
dently predict upcoming attentional lapses on a continuous 
performance task (Corriveau, Chao et al., 2024a, Corriveau, 
James et al., 2024b). But while both options are valid ways 
to index attention, RT variability calculations typically rely 
on calculating how much a trial's RT deviates from the mean 
correct-trial RT after completing the whole task. For real-
time triggering to be possible, changes in attention needed 
to be detected before the full-task RT mean was determined. 
For this reason, RT-based real-time triggering was used here 
instead of RT variability. Moreover, one important yet under-
acknowledged feature of real-time triggering is that it forces 
one to ‘preregister’ the attention measure of interest before 
data collection occurs, as it is built into the experimental 
design itself. Thus RT- or RT-variability-based triggering 
would both be valid for detecting fluctuations in attention, 
but the former was a better fit for our current paradigm.

A post hoc analysis was conducted to examine whether 
RT deviance (the standard deviation of the 3 preceding tri-
als before a triggered trial) differed significantly leading up 
to high- and-low attention-triggered trials. The results of 
a paired-samples t test confirmed that high-attention tri-
als were preceded by less RT deviation (M = 0.059, SD = 
0.022), compared with low-attention trials (M = 0.101, SD 
= 0.024), t(63) = −12.23, p < .001, d = −1.85, CI95 [−2.35, 
−1.36]. This finding is aligned with prior work suggest-
ing that more stable RTs predict higher levels of attention, 
whereas variable RTs are predictive of attentional lapses 
(e.g., Chidharom & Carlisle, 2024; Rosenberg et al., 2013).

Experimental conditions

Participants were assigned to one of two experimental condi-
tions in an alternating manner: Congruent and Incongruent. 
If a subject was in the Congruent condition, attention state 
and image memorability were matched such that, when a 
participant was in a high-attention state, a high-memorabil-
ity image from the infrequent category was inserted. If they 
were in the Incongruent condition, attention state and image 
memorability were mismatched such that, when a partici-
pant was in a high-attention state, a low-memorability image 
from the infrequent category was inserted. Critically, for 
both conditions, while frequent-category images could have 
any memorability score, infrequent-category images were 
manipulated to be either high or low memorability only. The 
memorability of these infrequent-category images depended 
on the attentional state that triggered the infrequent trial, as 
well as the participant’s congruency condition assignment.

Fig. 2   An illustration of the attention triggering procedure with 
example data showing real-time event triggering dependent on states 
of high and low attention, as calculated based on trailing average RT. 
Dotted lines in blue and red represent the ±1 SD threshold used to 
indicate states of high or low sustained attention, respectively. Blue 
and red dots correspond to trials when a participant’s sustained atten-
tion is detected as being high or low, respectively, thus triggering 
an infrequent category image on the subsequent trial. (Color figure 
online)
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Memory task

Immediately following the continuous performance task, 
participants performed a surprise image recognition memory 
test (self-paced, approximately 8 min to complete) consist-
ing of all infrequent-category images seen during the con-
tinuous performance task (‘old’ images). Because attention 
varied by participant, so too did the number of infrequent 
trials that were available for use as ‘old’ items on the rec-
ognition test: overall (M = 31.9, SD = 4.37, range: 24–42), 
high attention (M = 20.6, SD = 4.09, range: 11–25), low 
attention (M = 11.3, SD = 5.50, range: 2–25). For each 
participant, there was also an equal number of new images 
randomly selected from the larger collection of 100 middle-
memorability images for the same scene category as the 
‘old’ images. No images from the frequent category in the 
encoding phase were presented during the memory task. 
Images were presented in a random order. Participants were 
instructed to indicate their memory and confidence that each 
image had appeared in the continuous performance task on 
a scale of 1–4: ‘1’ indicated high confidence that the image 
was new, ‘2’ was low confidence that the image was new, 
‘3’ was low confidence that the image was old, and ‘4’ indi-
cated high confidence that the image was old. Participants 
were encouraged to use the entire response scale. High-con-
fidence old responses (i.e., responses of ‘4’) were later taken 
to indicate that an item was considered previously studied, 
whereas all other responses were taken to indicate that an 
item was not seen before (deBettencourt et al., 2018; Kim 
et al., 2014; Turk-Browne et al., 2006; Wagner et al., 1998; 
Wakeland-Hart et al., 2022). However, we found that our 
results replicated even when using a more lenient threshold 
(a low-confidence threshold of ‘3’ or ‘4’ for ‘old’ responses; 
see Results section). After the participant made a response to 
an image, we updated the confidence rating scale to overlay a 
red dot so as to visually depict the response. The confidence 
scale, response dot, and image remained on the screen for 
500 ms before the next image appeared; the answer could 
not be changed during this time. There was no interstimulus 
interval.

Statistical approach

A′ (A-prime; Stanislaw & Todorov, 1999) was used to 
assess recognition memory performance due to its non-
parametric assumptions. These nonparametric qualities are 
robust to violations of normality that are likely to be pre-
sent when studying the extremes of memorability and sus-
tained attention distributions. A′ was calculated from the 
hit rate of triggered (‘old’) items on the recognition test 
(separately for images encoded in high- and low-attention 
states) and the false-alarm rate for new items.

To examine memory performance across conditions, 
a mixed-effects logistic regression was formed using the 
lme4 package (Version 1.1-34; Bates et al., 2015) for R 
(Version 4.3.2; R Core Team, 2020), employing the Satter-
thwaite adjustment to degrees of freedom. Attention (high, 
low) and memorability (high, low) were entered as binary 
predictors regressed onto A′ with a subject-level random 
factor included as well:

We chose to report a model without random slopes in 
order to match the prior work we are directly extending 
(Wakeland-Hart et al., 2022). By not including random 
slopes for these factors, there is greater compatibility and 
ease of comparison between studies. To ensure that this deci-
sion did not impact our results, we compared two similar 
models that differ only in their inclusion of both Attention 
and Memorability as random slopes. Because using ran-
dom slopes requires trial-level data, the dependent meas-
ure changed from A′ to hit rate. The two models—one with 
Attention, Memorability, and Participant as random slopes, 
and one with only Participant as a random slope—did not 
differ significantly, χ2(5) = 0.81, p = .977.

To compare the relative contributions of attention and 
memorability in predicting later memory performance, a 
contrast was conducted using the multcomp package (Ver-
sion 1.4-25; Hothorn et al., 2023). Between-group compari-
sons were then conducted via the emmeans package (Version 
1.8.9; Lenth et al., 2023), while effect sizes (Cohen’s d) and 
their 95% confidence intervals were determined with 10,000 
bootstraps via the percentile method in the rstatix package 
(Version 0.7.2; Kassambara, 2021). Bayes factors were 
calculated using the BayesFactor package (Version 0.9.12-
4.5; Morey et al., 2011), enlisting a default Jeffreys–Zell-
ner–Siow (JZS) prior with a Cauchy distribution (center = 
0, r = .707). This package compares the fit of various linear 
models. In the present case, Bayes factors for the alternative 
(BF10) are in comparison to null models containing partici-
pant as a random effect. Bayes factors for interactions are 
relative to models containing both main effects. Interpreta-
tions of Bayes factors follow the conventions of Lee and 
Wagenmakers (2013). Bayes factors in favor of the alterna-
tive (BF10) or null (BF01) models are presented in accordance 
with each preceding report of Null hypothesis significance 
testing (NHST) analyses (i.e., based on a p < .05 criterion) 
such that BF ≥ 1.

Finally, receiver operating characteristic curve (ROC) 
analyses were also conducted using the ROC Toolbox (Koen 
et al., 2017) for MATLAB, treating response decisions as 
continuous based on confidence ratings rather than as binary 
old/new decisions. Due to an insufficient number of trials 
in each condition per participant, however, we were unable 

A� ∼ Attention ×Memorability + (1|Participant)
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to compare results statistically. The pattern of results based 
on ROC analyses, however, matched the results presented 
here based on A' (see the Supplemental Materials for more 
details).

Results

The goal of this study was to determine whether memory per-
formance can be improved by first detecting real-time fluctua-
tions in sustained attention and then using that information to 
present specific images with predetermined levels of intrinsic 
memorability. We expected both attention and memorability 
to each significantly predict later memory performance. We 
also reasoned that inserting high-memorability images could 
maximize performance when attention was high and rescue 
performance when attention was low. Analogously, we pre-
dicted that inserting low-memorability images would mini-
mize performance when attention was low, but may rescue 
memory performance for impoverished items when attention 
was high.

Verifying the adaptive cognitive interface

We first examined whether real-time triggering success-
fully captured fluctuations in sustained attention. Sustained 
attention was operationalized as the real-time RTs in the 
continuous performance task, after detrending and averag-
ing over a trailing window. Indeed, our algorithm success-
fully differentiated states of sustained attention, with quicker 
RTs on low-attention triggered trials (mean centered RT = 
−0.159), and slower RTs on high-attention triggered trials 
(mean centered RT = 0.182; see Fig. 3A).

Next, we examined the memorability of the images that 
appeared contingent to extreme attentional states. Memora-
bility was operationalized as the CR scores for these images, 
as determined by testing with a separate sample of partici-
pants (see Methods). As can be seen clearly in Fig. 3B, our 
algorithm successfully displayed extremely low (average CR 
= 0.469) or extremely high (average CR = 0.834) memora-
bility images, dependent on attentional state and congruency 
group assignment.

Memory performance

A mixed-effects logistic regression was used to assess the 
effects of image memorability and sustained attention on later 
memory performance. There were significant main effects of 
both attention, β = .49, SE = .23, t(118.22) = 2.09, p = .039, 
BF10 = 1.67, and memorability, β = .81, SE = .23, t(118.22) 
= 3.49, p < .001, BF10 = 1,565 on memory, such that higher 
attention and intrinsic memorability predicted better memory 
performance (Fig. 4A). The interaction effect, representing 
the effect of Congruency group, was nonsignificant, β = 
−.28, SE = .36, t(62) = −0.77, p = .446, BF01 = 2.52. A 
contrast to compare the relative contributions of attention 
and memorability in predicting later memory performance 
revealed that the variance explained by the two factors were 
not reliably different, z = −1.58, SE = 0.02, p = .114.

A mixed-effects model was also conducted using a low 
confidence threshold (i.e., ‘3’ and ‘4’ were coded as ‘old’ 
responses), and the main findings did not change: Atten-
tion: β = .52, SE = .24, t(122) = 2.19, p = .031, Memora-
bility: β = .79, SE = .24, t(122) = 3.32, p = .001, Interac-
tion: β = −.40, SE = .37, t(122) = −1.08, p = .283.

Fig. 3   A Histogram of all trials from the encoding phase with high-
attention trials in blue and low-attention trials in red, indicating suc-
cessful implementation of the attention manipulation for slow and fast 
RTs, respectively. B Histogram of memorability scores for all scene 

images in the stimulus set. Triggered images with low memorability 
are depicted in red, while triggered images with high memorability 
are depicted in blue. Example high- and low-memorability stimuli are 
displayed. (Color figure online)
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Fig. 4   Memory performance (A′) modulations as a function of sus-
tained attention and memorability. A Overall memory performance 
benefits for high relative to low levels of both attention and memora-
bility within subject. B Between-subjects contrasts demonstrating that 
high attention ‘rescues’ performance for low-memorability images 
(left), and that having high attention does not improve performance 

over and above high memorability (right). C Between-subjects con-
trasts demonstrating that high-memorability images improve perfor-
mance even when attention is low (left), and that low memorability 
hurts performance even when attention is high (right). (Color figure 
online)
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Next, the effects of high and low levels of attention and 
memorability were examined between groups. Planned 
comparisons revealed that memory performance was 
significantly greater for high-memorability images rela-
tive to low-memorability images when encoded under 
both high attention, t(118) = 2.29, p = .024, d = 1.01, 
CI95 [0.51, 1.67], BF10 = 160, and low attention, t(118) 
= 3.49, p < .001, d = 0.67, CI95 [0.27, 1.08], BF10 = 4.98 
(Fig. 4C), demonstrating that the effects of memorability 
are relatively immune to fluctuations in sustained atten-
tion. Memory performance for high-memorability items 
did not differ as a function of sustained attention state, 
t(118) = 0.89, p = .374, d = 0.31, CI95 [−0.19, 0.75], BF01 
= 2.06, suggesting that high memorability itself can keep 
performance levels high, even when attention wanes (see 
Table 1 and Fig. 4B, right). However, when testing low 
memorability (i.e., forgettable) images, memory was better 
for items encoded under high attention, t(118) = 2.09, p = 
.039, d = 0.43, CI95 [−0.02, 0.77], BF10 = 0.88, suggesting 
that memory for forgettable images can be rescued if they 
are encoded in an attentive state (Fig. 4B, left).

Thus, recognition memory performance for high-mem-
orability images was consistently better than for low-mem-
orability images and was unaffected by attentional state at 
encoding. Memory for low-memorability images, on the 
other hand, was better when they were encoded in states of 
engaged attention. In other words, high memorability can 
improve memory for images encountered in disengaged 
attentional states, while engaged attention can improve 
memory for low-memorability images. Encoding highly 
memorable images in highly attentive states, however, does 
not confer additional benefits for memory.

Discussion

In the current study, we designed an adaptive cognitive 
interface that strategically inserted specific images con-
tingent on real-time detection of cognitive states. That 
is, we inserted high- or low-memorability images when 

participants were attentive or inattentive. Our goal was to 
directly manipulate the interplay between internal states 
(in this case, sustained attention) and external stimulus-
based factors (in this case, intrinsic memorability). We 
measured sustained attention in real time via RTs on a 
continuous performance task. When a high- or low-atten-
tion state was detected, the algorithm triggered an image 
on the subsequent trial. The triggered image was either 
high or low memorability, depending on whether the par-
ticipant was assigned to the congruent or incongruent 
condition. We observed that both high attention and high 
intrinsic memorability benefitted memory performance. In 
sum, we created adaptive encoding phases, whereby later 
memory performance could be examined to determine the 
maximally efficient combination of attention and memo-
rability at encoding.

Memorable and forgettable images were differentially 
susceptible to sustained attentional state. Although there was 
no additive benefit of encoding memorable images while 
in a high-attentive versus a low-attentive state, forgettable 
images were better remembered when encoded in a highly 
attentive state. That is, when tasked with trying to remember 
an image that is known to be forgettable, it helps to be in an 
attentive state. So, while the intrinsic memorability of an 
image is an important determinant of later memory perfor-
mance, there is still a memory benefit in trying to pay atten-
tion: Performance can be rescued when to-be-remembered 
stimuli are forgettable.

In contrast to the different effects of sustained attention 
on later recognition of memorable and forgettable images, 
the intrinsic memorability of an image impacted memory 
regardless of attentional state. Memorable images were bet-
ter remembered than forgettable ones, regardless of whether 
participants were engaged or disengaged. Put another way, 
the benefits of encoding high-memorability images are 
immune to lapses in attention.

On the other hand, observing images in an attentive state 
did not significantly improve recognition of highly memo-
rable images either. One possibility is that the locus of con-
trol for later recognition of high-memorability images is not 

Table 1   Descriptive statistics for memory performance across groups and conditions

All performance metrics reported here refer to data from the memory test in our current study. Corrected recognition refers to hit rate minus false 
alarm rate

Condition Attention Memorability A’ Hit Rate False Alarm Rate Corrected 
Recognition

M SD M SD M SD M SD

Congruent High High .87 .06 .54 .20 .03 .04 .51 .20
Low Low .76 .16 .31 .20 .28 .19

Incongruent High Low .81 .05 .38 .17 .04 .05 .33 .15
Low High .84 .08 .51 .21 .46 .19
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held by the observer, but is rather largely predetermined by 
features of the stimulus itself. For instance, recent work has 
shown that memorable items are processed more efficiently 
(Deng et al., 2024; Gedvila et al., 2023; Ma et al., 2024), and 
perhaps as a consequence of this efficiency, seem to be bet-
ter than forgettable items at making it through the working 
memory bottleneck into long-term memory (Gillies et al., 
2023; Ye et al., 2024). However, high-memorability items do 
not seem to elicit automatic attentional capture, as they do 
not gain a pop-out benefit in a visual search task (Bainbridge, 
2020). Thus, it could be the case that memorable images 
are encoded so efficiently that they consistently enter long-
term memory when attention is low, and therefore cannot be 
improved upon when attention is high.

A final possibility is that our attention-triggering algo-
rithm did not sample the most extreme attentional states. 
Because we required the three trials preceding any triggered 
image to be correct frequent-category trial responses, we 
did not present triggered trials during lapses that were cata-
strophic enough to cause errors on frequent-category image 
classifications. Potentially supporting this notion, highly 
memorable images were numerically (but not significantly) 
better remembered when encoded in states of high relative 
to low attention.

Future work varying attentional-state-dependent trigger-
ing criteria and encoding task features (such as the degree to 
which they facilitate engaged vs. lapsing attention) can fur-
ther characterize the relative strength of memorability and 
attentional state as predictors of subsequent memory. Later 
interfaces could be even more personalized, with specific 
tailoring of the image content to the participant to maximize 
its memorability. A triggering model that incorporates task-
specific information or a more nuanced attention index (such 
as one measured from the brain) could enhance our ability to 
elicit improved memories. However, one important factor to 
balance when utilizing an alternate sustained attention meas-
ure is that there must be sufficient moments of extremely 
high or low attention to elicit enough triggered trials.

Here, we have shown that people’s memory performance 
can be altered without any intentional encoding or cognitive 
strategy (e.g., chunking, drawing). By simply taking advan-
tage of natural fluctuations in attention and strategically 
presenting specific materials, we can ensure the best per-
formance possible. This study supports both memorability 
as an intrinsic stimulus characteristic, and attentional state 
as being influential to memory encoding. In other words, 
we show how memorability and sustained attention jointly 
contribute to episodic remembering and therefore should 
both be considered when developing contemporary models 
of memory.

In the laboratory, this new technology allows for not only 
the tailoring of experiments and digital experiences to each 
individual, but also for the customization of parameters on 

a moment-by-moment basis, dependent on the individual’s 
performance or feedback. Such tools can be used to exam-
ine the interplay of seemingly any cognitive process, allow-
ing for the cross-examination of population-level phenom-
ena with idiosyncratic cognitive and neural mechanisms. 
Employing such a tool in the present case, we were able to 
characterize the interplay of individual attention and image 
memorability on later memory performance and demonstrate 
that each factor is able to rescue memory when the other 
factor is diminished.

Adaptive cognitive interfaces also have numerous prac-
tical and translational applications. Our current approach 
could be employed in educational settings to present the 
least memorable concepts when students are most attentive 
(Guo & Bainbridge, 2023). For example, when learning 
a foreign language, memorable or forgettable vocabu-
lary could be strategically presented contingent on the 
learner’s attentional state. This approach could also be 
used to scaffold memory and learning for populations that 
have impairments in memory (e.g., Alzheimer’s disease) 
or attention (e.g., attention-deficit/hyperactivity disor-
der). Importantly, our approach uses measures that are 
relatively easy to capture—attention is simply measured 
by RT, while image memorability can be estimated in 
advance using neural networks (Needell & Bainbridge, 
2022), making such innovations feasible to incorporate 
into any system.

Conclusion

Recent work has established the contributions of two 
major factors that influence what information is likely 
to be remembered: intrinsic memorability and sustained 
attention. While both factors are known to influence mem-
ory individually, it was still unclear how their combination 
might alter memory, and whether they could be leveraged 
together to maximize overall performance. Here, we devel-
oped and validated an adaptive cognitive interface—cus-
tomized for each participant on the fly—that allowed for 
consideration of both what information is presented and 
when to show it (based on intrinsic memorability and sus-
tained attention, respectively). In so doing, we have shown 
that when participants are inattentive, encoding of highly 
memorable images reliably improves memory perfor-
mance relative to forgettable images, despite participants’ 
lack of focus. Memory for forgettable images, on the other 
hand, can be ‘rescued’ if shown when participants are in 
states of high attention. As a result, we have demonstrated 
that natural fluctuations in participants’ attentional states 
and the intrinsic memorability of to-be-remembered stim-
uli can be strategically combined to bolster memory in any 
given situation.
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