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ABSTRACT
Individuals with depression show an attentional bias toward negatively valenced stimuli and thoughts. In this proof-of-
concept study, we present a novel closed-loop neurofeedback procedure intended to remediate this bias. Internal
attentional states were detected in real time by applying machine learning techniques to functional magnetic reso-
nance imaging data on a cloud server; these attentional states were externalized using a visual stimulus that the
participant could learn to control. We trained 15 participants with major depressive disorder and 12 healthy control
participants over 3 functional magnetic resonance imaging sessions. Exploratory analysis showed that participants
with major depressive disorder were initially more likely than healthy control participants to get stuck in negative
attentional states, but this diminished with neurofeedback training relative to controls. Depression severity also
decreased from pre- to posttraining. These results demonstrate that our method is sensitive to the negative atten-
tional bias in major depressive disorder and showcase the potential of this novel technique as a treatment that can be
evaluated in future clinical trials.

https://doi.org/10.1016/j.bpsc.2020.10.006
Individuals with depression process negative stimuli differently
than healthy individuals, leading to differences in attention,
memory, and cognitive control (1–5). Participants with
depression also tend to show larger and more prolonged
neural responses to negative stimuli (6). This may manifest
clinically as rumination, the automatic replay of negative
thoughts (1,7). Given that participants with depression attend
more to negative information, researchers have designed
paradigms to train participants to reduce this negative bias
and, ultimately, depression severity (1,4).

One common approach is attention bias modification
training, which involves learning to shift overt spatial attention
away from negative stimuli and/or toward positive stimuli
(8–12). Another training approach, cognitive bias modification
for interpretation (13), involves learning to adopt the positive
interpretation of an ambiguous situation (14).

Following these forms of training, participants typically
display the reinforced behavior, for example, attending less to
negative stimuli (12,15). However, transfer to clinical measures
(e.g., reduced depression severity or self-reported rumination)
has been inconsistent (2,16–18). A potential limitation of the
aforementioned studies is their use of preprogrammed training
schedules; recent approaches to attention training have taken
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a more adaptive approach, providing behavior-based, real-
time feedback based on mouse position (19) or eye fixation
(20,21). Although such approaches have yet to be tested in
clinical populations, healthy participants showed promising
improvements in reappraisal (21) and rumination (19,20).

While behavioral training has been the main approach to
reduce attentional biases in depression, behavioral measures
such as button presses and eye movements are downstream
effects of underlying neural differences. Neural feedback, such
as feedback from functional magnetic resonance imaging
(fMRI), allows for measures that are closer to the source of the
biases and thus have the potential to be more sensitive and
informative. Indeed, participants with depression show
neural—but not behavioral—evidence of increased processing
of negative stimuli that are presented quickly (22). In our work,
we therefore sought to combine the advantages of adaptive
feedback with the potentially enhanced sensitivity of neural
measurements of attention.

A previous study (23) demonstrated the potential of real-
time fMRI (rt-fMRI) neurofeedback to improve sustained
attention in healthy participants. Participants received visual
feedback based on their brain activity during an attention task.
Overlaid face and scene images with variable opacity values
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were shown as participants responded to a cued go category
and ignored the other, uncued no-go category. Neurofeedback
was embedded in a closed-loop circuit: if the neural data
indicated that participants were attending more to the incorrect
category (e.g., faces), then stimuli in that category would
become more opaque (e.g., faces would become more
prominent and scenes would become more transparent). This
served to externalize the participants’ bad attentional state,
making the task more difficult during attentional lapses, and
thus alerting them to try harder to push themselves into a
better state. This procedure yielded significant improvements
in attention after a single neurofeedback session. In addition,
participants receiving feedback that was veridical (based on
their own brain activity) as compared with control feedback
(yoked to someone else’s brain activity) exhibited an increased
benefit, indicating that individualized feedback was
advantageous.

In this study, we adapted this closed-loop procedure to
assess its potential suitability for reducing the negative atten-
tional bias in participants with major depressive disorder
(MDD), rather than improving sustained attention in general. To
accomplish this goal, we modified the neurofeedback task so
participants always had to ignore negative faces; when par-
ticipants’ attention drifted to the negative faces, the faces were
made more visible and the scenes were made less visible. In
this situation, participants needed to learn to unstick them-
selves from the negative attentional state to make the scenes
more visible, so they could continue with the instructed task of
responding to the scenes. In addition, to increase the clinical
utility of this procedure, we implemented a novel open-source
Python cloud-based analysis pipeline (https://github.com/
brainiak/rtAttenPenn_cloud), making it possible to run our
multivariate rt-fMRI procedure in the cloud regardless of the
availability of local computing resources and expertise.

Given the novelty of the techniques used here, we sought to
run a proof-of-concept study to demonstrate that we met key
benchmarks before undertaking a lengthy and expensive
clinical trial. These benchmarks included 1) technical feasi-
bility, showing that we can successfully run an rt-fMRI exper-
iment using our cloud pipeline for closed-loop neurofeedback;
2) sensitivity to negative attentional bias, identifying measures
that can robustly detect the negative attentional bias in par-
ticipants with MDD at the start of training; and 3) sensitivity to
training, showing that the measured difference in negative
attentional bias between participants with MDD and healthy
control (HC) participants decreases over the course of training.
These benchmarks constitute the minimum necessary features
to justify a (future) clinical trial. We also hoped to see some
correlation within the MDD group between improvement on our
experimental measure of negative attentional bias and
improvement in clinical symptoms, but this kind of individual-
differences correlation requires a much larger sample size to
be adequately powered; for our present purposes, we were
simply hoping to see a trend in the predicted direction.

Our approach builds on a previous pilot study using a
variant of this neurofeedback task in 7 participants with
depression (24) in several ways. First, we used a cloud-based
analysis pipeline rather than a customized local computing
solution to increase accessibility (benchmark #1). Second, we
included an HC group to assess whether our measures can
Biological Psychiatry: Cognitive Neuroscience and
detect a greater negative attentional bias in participants with
MDD versus HC participants (benchmark #2) and how this
difference can be affected by training (benchmark #3). Third,
we included a wider range of behavioral and neural measures,
with the goal of identifying which of these measures are most
sensitive to negative attentional bias and changes in this bias
over time. Fourth, we included larger (although still modest)
sample sizes to test these benchmarks more definitively.

Below, we describe how our procedure successfully meets
the three benchmarks, demonstrating technical feasibility and
(in an exploratory analysis) that we can both detect the nega-
tive attentional bias and reduce it through training. Although
additional work is needed to show that our neurofeedback
procedure is an effective treatment for MDD (see Discussion),
these proof-of-concept results demonstrate the potential of
our procedure for studying psychiatric disorders and set the
stage for future clinical trials.

METHODS AND MATERIALS

Participants

A total of 27 adults participated in the study, including 14
participants with MDD and 1 participant with persistent
depressive disorder (8 female, mean age = 27.3 years) and 12
who served as HC participants (6 female, mean age = 25.4
years). We had preregistered a sample size of 16 participants
from each group, but we were unable to reach the target
sample sizes because data collection was suspended during
the COVID-19 coronavirus pandemic. (Preregistration may be
accessed here: https://aspredicted.org/eg59c.pdf.) A total of
23 participants completed all 7 visits as planned; 2 participants
could not complete the in-person portions of visit 6 because of
the COVID-19 pandemic; 1 participant was lost to follow-up
after visit 5; and 1 participant was lost to follow-up after visit
6. For all analyses, we included all data collected, regardless of
the availability of follow-up data. Both groups underwent the
same experimental procedure, differing only in initial diagnosis
requirements. Participants were recruited from the University
of Pennsylvania Center for Neuromodulation in Depression and
Stress laboratory. All participants received monetary
compensation for participation. The study was approved by
the University of Pennsylvania Institutional Review Board and
the Princeton University Institutional Review Board through an
Institutional Review Board Authorization Agreement. See the
Supplement for eligibility criteria.

Procedure

The study consisted of a total of 7 visits per participant, as
illustrated in Table S1. The first 5 visits were the main study
(prescanning, 3 neurofeedback sessions, postscanning). Visit 6
was a behavior-only 1-month follow-up. Visit 7 was a 3-month
follow-up phone call. For all participants, we tried to schedule
the first 5 visits within 2 weeks as closely as possible.

After providing consent on visit 1, participants completed
the Structured Clinical Interview for DSM-5 Disorders (25) to
assess lifelong symptoms, current depression symptoms, and
the presence of additional exclusionary conditions. Partici-
pants completed the Structured Clinical Interview for DSM-5
Disorders on visit 1 only. On completion, the Montgomery–
Neuroimaging April 2021; 6:490–497 www.sobp.org/BPCNNI 491

https://github.com/brainiak/rtAttenPenn_cloud
https://github.com/brainiak/rtAttenPenn_cloud
https://aspredicted.org/eg59c.pdf
http://www.sobp.org/BPCNNI


Neurofeedback Attention Training in Depression
Biological
Psychiatry:
CNNI
Åsberg Depression Rating Scale structured clinical interview
(26,27) was administered to assess depression symptoms
specifically over the week preceding visit 1. The Montgomery–
Åsberg Depression Rating Scale was also administered on
visits 5–7 to assess how depression severity changed over
time. Participants completed additional behavioral and neural
tasks before and after neurofeedback (Table S1).

Participants completed 7 to 9 neurofeedback runs per visit
on visits 2 through 4 (we fit in as many runs as we could within
each 2-hour scanning session). Each neurofeedback run
contained 8 blocks: the first 4 blocks (stable blocks) showed
only neutral stimuli with constant opacity and served as
training data for the face-versus-scene classifier; in the last 4
blocks (except run 1), the attended category was neutral
scenes and the distractor category was negative faces
(Figure S1). These blocks served as neurofeedback blocks, in
which the opacity changed depending on the relative degree of
neural representation of scenes versus faces indicated by a
pattern classifier applied to fMRI. Participants were informed
that the change in opacity was determined by their brain ac-
tivity rather than their button-pressing accuracy.

At the start of each block, participants were given a cue that
indicated the block type (face or scene) and go category. For
instance, the cue “indoor scenes” indicated that participants
should press for indoor scenes (90% go trials) and refrain from
pressing when seeing outdoor scenes (10% no-go trials). In
addition, while making go/no-go judgments, participants had
to continuously ignore the overlaid irrelevant stimuli (e.g.,
faces). For each participant, the go scene category (indoor or
outdoor) and go face category (male or female) were the same
across all visits. Assignment of categories was counter-
balanced across participants within each group. For additional
task details, see Figure S1 and deBettencourt et al. (23).

Data Acquisition

All scanning was acquired with a 3T Siemens Prisma MRI
scanner (Siemens AG, Erlangen, Germany), using a 64-channel
head coil. Sequences were matched to those in deBettencourt
et al. (23) as much as possible. During the first scanning ses-
sion, we collected a high-resolution magnetization prepared
rapid acquisition gradient-echo anatomical scan to construct
the whole-brain mask used in real time and for offline regis-
tration. FSL (http://fsl.fmrib.ox.ac.uk/) was used to register the
MNI152 standard-space T1-weighted average structure tem-
plate (28) to each participant’s brain in functional space. We
used this registered whole-brain region of interest (ROI) as the
mask for each participant. The functional scans consisted of a
gradient-echo, echo-planar imaging sequence covering the
whole brain (2-s repetition time [TR], 28-ms echo time, 3-mm
isotropic voxel size, 64 3 64 matrix, 192-mm field of view,
36 slices). At the end of each scanning session, a fieldmap
scan was acquired for offline processing.

Real-Time Processing

Figure 1 provides an overview of our real-time processing
system, from the initial stimulus display to subsequent cloud
analysis and, finally, stimulus update. During neurofeedback
runs, each new DICOM (Digital Imaging and Communications
in Medicine) image was motion corrected to the previous time
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point following Siemens’ custom motion correction. Thereafter,
the DICOM file was saved onto a local Linux machine in the
scanning room. Then, the data were masked and flattened into
a 1D-vector and sent to the cloud server for further pre-
processing (see Supplement) and classification.

During neurofeedback, a multivoxel pattern classifier (29)
was used to decode the extent to which attention was
directed at the task-relevant scene or the task-irrelevant face
for every time point of image acquisition (TR). The difference
between the amount of classifier evidence for scenes
(ranging from 0 to 1) and faces (ranging from 0 to 1) was
used as the output neurofeedback score. This score was
saved as a text file and sent back to the local computer to
influence the display during the following time point. See the
Supplement for further information on cloud configuration
and processing.

Neurofeedback Display

The MATLAB (Release 2014a; The MathWorks, Inc., Natick,
MA) script controlling the display loaded each new text file as it
was detected. The neurofeedback score was converted to an
opacity value for the neutral scene using a sigmoidal transfer
function (Figure 1). Then, opacity was smoothed using a
moving window over the values from the previous 2 time points
to ensure that changes in opacity were not abrupt (23). This
smoothed value was set as the opacity for the following 3 trials
(1.5 TRs) while the next time point was collected and
preprocessed.

Neurofeedback Performance

As a first-pass (preregistered) measure of participants’ bias
toward attending to negative faces, we computed the average
scene minus face classifier evidence for neurofeedback runs—
the more the participants attend to faces, the more negative
this score will be. In addition, based on previous findings
indicating that participants with MDD specifically have diffi-
culty in disengaging from negative stimuli (22,30,31), we
computed a second disengagement-focused neural measure
that tracked the probability of remaining stuck in the most
negative attentional state; this measure was not preregistered.
During neurofeedback runs, when the classifier detected an
increase in attention to the (task-irrelevant) negative faces, this
triggered an increase in the visibility of those faces, effectively
punishing participants by making it even harder to see (and
thus respond to) the task-relevant scenes; our second
disengagement-focused measure tracked how well partici-
pants were able to escape this situation (i.e., negative face
attention leading to maximal negative face visibility) by disen-
gaging from the negative face and attending to the neutral
scene (see below for how we measured disengagement). To
the extent that participants with MDD have a disengagement
deficit, we might expect this targeted measure to detect this
deficit more effectively, compared with simply measuring
average face activity.

To estimate each participant’s attentional state at a given
time, we discretized the continuous distribution of scene minus
face classifier evidence (ranging from 21 to 11). Because we
used a logistic regression classifier, classification values were
distributed toward the extremes (61). We adjusted the scene
pril 2021; 6:490–497 www.sobp.org/BPCNNI
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Figure 1. Cloud-based closed-loop real-time
functional magnetic resonance imaging attention-
training technique. (A) Participants perform a go/
no-go task on overlaid face/scene stimuli, where
they respond based on whether the scene image is
indoor or outdoor and thus have to constantly ignore
negative faces. (B) As each new time point is ac-
quired, the data are masked and flattened to a 1D-
vector. (C) The data are sent to a cloud server for
preprocessing and classification. (D) The result is
sent as a text file to the local machine controlling the
display. A sigmoidal transfer function converts the
relative scene minus face classification evidence
difference into opacity proportions, so that the
attended category (as measured by the classifier)
will become more visually prominent. (E) The opacity
value is smoothed and updated for the next time
point. As shown, when participants are in a maxi-
mally negative state, the negative faces dominate
the composite image.
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minus face classification bins to roughly equate the number of
classification samples in each (Figure 2A).

We next quantified the extent to which these discretized
attentional states persisted over time. We operationalized this
measure as the conditional probability that the scene minus
face difference remained in the same bin across time points.
Because we were interested in how feedback delivered at time
t affected attention, we compared the attentional state at time t
to the attentional state at time t plus 5 seconds (where we
would expect feedback effects on brain activity to be maximal,
accounting for the hemodynamic lag). As each TR was 2
seconds, we separately calculated results using 2- and 3-TR
shifts and averaged the results to estimate a 5-second shift.
Specifically, for each time delay, d (2 or 3 TRs), for a given
attentional state bin, A, we calculated the persistence of that
state by counting the number of times that the scene minus
face classification value fell within A at time t 1 d, given that it
was in A at time t. We then divided this number by the total
number of occurrences of state A, as shown in the equation
below:

pðAt1djAtÞ¼
P

stateðt1dÞ ¼ A
P

stateðtÞ ¼ A
Biological Psychiatry: Cognitive Neuroscience and
We then averaged all conditional probabilities from the 2-
and 3-TR shifts over all runs considered. In this manner, we
were able to compute persistence in the most negative state
(the disengagement-focused measure described above) as
well as persistence in all of the other states. To understand
how attention changed from early to late in training, we iso-
lated the initial 3 neurofeedback runs of the first session (visit 2;
early neurofeedback) and the final 3 neurofeedback runs of the
last session (visit 4; late neurofeedback).

RESULTS

Depression Severity

As hypothesized, depression severity decreased over time for
participants with MDD (Figure 2D). Depression scores
decreased significantly from pretraining in visit 1 to posttraining
in visit 5 (one-tailed t14 = 3.61, p = .0014), to the 1-month follow-
up in visit 6 (one-tailed t13 = 2.85, p = .0069), and to the 3-month
follow-up in visit 7 (one-tailed t12 = 3.43, p = .0025).

Neurofeedback Performance

We did not observe group differences in average scene minus
face classification (i.e., in the amount of time that participants
Neuroimaging April 2021; 6:490–497 www.sobp.org/BPCNNI 493
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Figure 2. Analysis and results. (A) Each block of
continuous scene minus face classification evidence
was converted into discrete attentional states
(dashed lines). This resulted in a roughly equal
number of observations in each state across par-
ticipants. (B) Probability of staying in a particular
attentional state over time for early and late neuro-
feedback (NF) runs. (C) During early NF, the 2
groups differed in their probability of staying in the
most negative attentional state. This group differ-
ence was eliminated by the late NF runs. (D)
Depression severity scores significantly decreased
for participants with major depressive disorder
(MDD) over time. (E) Within the MDD group, this
reduction in getting stuck in the most negative
attentional state showed a trending positive corre-
lation with the reduction in depression severity.
Circles represent individual participants; bars
represent group averages. Error bars represent 61
SEM. *p , .05; **p , .01; 1p , .1. FU, follow-up;
HC, healthy control; MADRS, Montgomery–Åsberg
Depression Rating Scale; MDD1, MDD at visit 1;
MDD6, MDD at visit 6; MDD7, MDD at visit 7; MDDE,
MDD at early NF runs; MDDL, MDD at late NF runs;
TR, repetition time; V, visit.
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focused on negative faces vs. neutral scenes) at either early or
late neurofeedback (Figure S3). However, we did observe group
differences in persistence in specific attentional states. At the
start of neurofeedback training, the largest difference between
groups in the probability of remaining in the same attentional
state over time occurred for the most negative state, with par-
ticipants with MDD showing a greater tendency to get stuck in
this state (one-tailed t24 = 2.80, p = .0049)1 (Figure 2B).

At the end of neurofeedback training, participants with MDD
were marginally less likely to get stuck in the most negative
state compared with at the start of neurofeedback training
(paired one-tailed t13 = 1.67, p = .059). In addition, there was a
significant interaction between group and visit, such that the
MDD group decreased in their probability of getting stuck in
1One participant with MDD was never in the most negative atten-
tional state during the early neurofeedback period, so the P(stay
in most-negative state) measure was undefined for this
participant during early neurofeedback; consequently, this
participant was omitted from analyses involving the early
neurofeedback period.

494 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
the most negative state from early to late in training relative to
the HC group (unpaired one-tailed t test comparing change in
MDD group to change in HC group, t24 = 2.04, p = .026)
(Figure 2C).

In addition, the reduction in the MDD group was associated
(across participants) with a marginally significant reduction in
depression severity (Pearson’s r = .48, p = .083) (Figure 2E).
There was also a trending correlation in the same direction in
the HC group (Pearson’s r = .51; p = .090). As noted above,
these individual-differences analyses are underpowered in this
study, so we were not expecting significant results; nonethe-
less, it is promising that results are trending in the predicted
direction.
DISCUSSION

Our novel closed-loop neurofeedback method successfully
detected the difficulty that participants with MDD have in dis-
engaging attention from negative stimuli; this was evident in
our finding that at the outset of training, participants with MDD
(vs. HC participants) were more likely to get stuck in the most
pril 2021; 6:490–497 www.sobp.org/BPCNNI
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2Links to software and documentation: 1) display code (https://
github.com/amennen/rtAttenPenn_display), 2) rt-cloud
processing code (https://github.com/brainiak/rtAttenPenn_
cloud), 3) documentation for running an experiment (https://
docs.google.com/document/d/1mI9S-5GYjOfDwFT5Ewb7nWy
HPoE00GsI0K0uk0_l6UA/edit?usp=sharing), and 4) example
DICOM data (https://zenodo.org/record/3873446#.X8-o1
apKgXo).
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negative attentional state (Figure 2B, C). Of note, there were no
significant initial differences in the average level of scene
minus face classifier evidence for participants with MDD
versus HC participants (Figure S3); that is, it was not the case
that participants with MDD simply had more brain activity
related to negative faces. To expose the initial difference be-
tween groups, we relied on an exploratory measure that spe-
cifically tracked participants’ tendency to persist in a negative
state; this initial difference between groups is consistent with
the idea that the core deficit in MDD is related to disengaging
from negative states, instead of a more general tendency to-
ward negative affect (22,30,31).

It is also noteworthy that there were no initial differences
in behavioral performance on the go/no-go task between
participants with MDD and HC participants (Figure S4). The
detection of group differences for the go/no-go task in
neural—but not behavioral—data implies that neural mea-
sures may be more sensitive for capturing attentional
differences (32,33). This underscores the value of using
rt-fMRI neurofeedback training to reduce negative atten-
tional bias.

Compared with most depression studies in the rt-fMRI
literature, this technique is unique in its design and anal-
ysis methods. First, we trained participants to disengage
attention from negative stimuli; by contrast, most of the
previous rt-fMRI studies trained participants with depression
to increase neural responses to happy stimuli, such as im-
ages (34,35) or autobiographical memories (36–39). Regu-
lating positive emotions has yielded robust benefits. For
example, Mehler et al. (35) even found unintentional clinical
benefits for the control group, who imagined relaxing scenes
while regulating scene-specific ROIs. Our study explored a
less-common approach of training away from negative
stimuli instead of toward positive stimuli. This was based on
our belief that learning to regulate negative attention may
strike at the underlying dysfunction more directly. The rela-
tive efficacy of training negative versus positive attention
can be tested in future studies, e.g., by using a variant of our
paradigm where participants are instructed to attend to
positively valenced faces or scenes while ignoring neutral
distractors from the other category.

The technique used in this study differs from that in the
small number of other rt-fMRI studies using negative stimuli in
that we regulated a decoded cognitive state as opposed to
mean ROI activity (40,41). For instance, Hamilton et al. (40)
trained 10 participants with depression to reduce neural re-
sponses to negative images within an individualized ROI
(defined based on the single voxel most sensitive to negative
images within the salience network). In another study (41),
participants recalled negative memories while using a strategy
from cognitive behavioral therapy. During cognitive behavioral
therapy application, a neurofeedback signal was used to train
participants to decrease anterior cingulate cortex activity. Both
studies yielded promising clinical benefits specific to real-time
training in the form of decreased negative self-descriptions (40)
and increased use of the trained cognitive behavioral therapy
strategy after neurofeedback (41). More work is needed to
assess the relative efficacy of our closed-loop attention-
training procedure compared with that of ROI-based
approaches.
Biological Psychiatry: Cognitive Neuroscience and
Following the promising results of this initial study, future
work could aim to verify that the positive clinical effects we
observed are specific to the individualized nature of the neu-
rofeedback. At this stage, we cannot rule out the possibility
that nonspecific factors (e.g., time, practice, placebo effects)
led to the observed changes in the MDD group. To address
this, another control group of participants with MDD would
need to be recruited to receive feedback scores that are either
yoked to the brain of a previous participant with MDD (23) or
determined by an irrelevant ROI (36,37). If this group does not
show the same improvements, it would be more certain that
the improvements shown by our participants with MDD relate
to receiving individualized neurofeedback (vs. a more general
effect of the procedure).

An important feature of the method reported here is the
real-time analysis of the imaging data performed on the
cloud. Although the sophistication and practical utility of rt-
fMRI has increased over the past 10 years (42), the preva-
lence of its use has been hampered by hardware re-
quirements and by the technical complexity of setting up and
running an experiment. Offloading computation to the cloud
should help to make this approach accessible to researchers
regardless of local computing resources and local computa-
tional expertise. Furthermore, the scalable nature of cloud
computing makes it easy to add computational complexity to
these pipelines; for example, if one wants to explore multiple
analysis variants in parallel to optimize the performance of the
classifier, one only needs to requisition more cloud
computing resources. In future work, we plan to extend our
framework to control both the real-time processing and
neurofeedback display via a cloud-based web server to
further minimize local dependency.

In summary, this initial proof-of-concept study highlights
the potential clinical benefits of rt-fMRI neurofeedback pro-
cedures that target specific cognitive states. By tracking
sustained attention over time, our technique provides a
face-valid way of detecting the difficulties that patients with
MDD experience in getting stuck in negative states. This
was borne out in the observed sensitivity of our measure to
initial differences between participants with MDD and HC
participants. By externalizing these internal attentional lap-
ses (i.e., making task-irrelevant negative faces more visible
as they were attended more), our technique provides rich
feedback that patients can leverage to learn to control these
states. This training potential is supported by our findings
showing reduced sustained negative attention in patients
with MDD and reduced depressive symptoms. By making
this technique openly accessible on the cloud, we hope to
make it easier for other researchers to explore the benefits
of this approach in diagnosing and treating MDD and other
clinical syndromes.2
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